Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 313(14): 3076-89, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17509565

RESUMO

Energy-producing pathways, adenine nucleotide levels, oxidative stress response and Ca(2+) homeostasis were investigated in cybrid cells incorporating two pathogenic mitochondrial DNA point mutations, 3243A>G and 3302A>G in tRNA(Leu(UUR)), as well as Rho(0) cells and compared to their parental 143B osteosarcoma cell line. All cells suffering from a severe respiratory chain deficiency were able to proliferate as fast as controls. The major defect in oxidative phosphorylation was efficiently compensated by a rise in anaerobic glycolysis, so that the total ATP production rate was preserved. This enhancement of glycolysis was enabled by a considerable decrease of cellular total adenine nucleotide pools and a concomitant shift in the AMP+ADP/ATP ratios, while the energy charge potential was still in the normal range. Further important consequences were an increased production of superoxide which, however, was neither escorted by major changes in the antioxidative defence systems nor was it leading to substantial oxidative damage. Most interestingly, the lowered mitochondrial membrane potential led to a disturbed intramitochondrial calcium homeostasis, which most likely is a major pathomechanism in mitochondrial diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Transporte de Elétrons/fisiologia , Glicólise/fisiologia , Mitocôndrias/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Potenciais da Membrana/fisiologia , Oxirredução , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
2.
Nucleic Acids Res ; 34(22): 6404-15, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17130166

RESUMO

The gene encoding mt-tRNA(Leu(UUR)), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNA(Leu(UUR)) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G in transmitochondrial cybrids. Increased steady-state levels of RNA19 was confirmed, although not to the levels previously reported in muscle. This data was consistent with an increase in RNA19 stability. The mutation resulted in decreased mt-tRNA(Leu(UUR)) levels, but its stability was unchanged, consistent with a defect in RNA19 processing responsible for low tRNA levels. A partial defect in aminoacylation was also identified, potentially caused by an alteration in tRNA structure. These deficiencies lead to a severe defect in respiration in the transmitochondrial cybrids, consistent with the profound mitochondrial disorder originally associated with this mutation.


Assuntos
Genes Mitocondriais , Miopatias Mitocondriais/genética , Mutação Puntual , RNA de Transferência de Leucina/genética , Proliferação de Células , Células Clonais , Transporte de Elétrons , Genótipo , Humanos , Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , RNA/química , RNA/genética , RNA/metabolismo , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mitocondrial , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , Aminoacilação de RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA