Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Environ Chem ; 4: 1096199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323923

RESUMO

Ecosystems downstream of mercury (Hg) contaminated sites can be impacted by both localized releases as well as Hg deposited to the watershed from atmospheric transport. Identifying the source of Hg in water, sediment, and fish downstream of contaminated sites is important for determining the effectiveness of source-control remediation actions. This study uses measurements of Hg stable isotopes in soil, sediment, water, and fish to differentiate between Hg from an abandoned Hg mine from non-mine-related sources. The study site is located within the Willamette River watershed (Oregon, United States), which includes free-flowing river segments and a reservoir downstream of the mine. The concentrations of total-Hg (THg) in the reservoir fish were 4-fold higher than those further downstream (>90 km) from the mine site in free-flowing sections of the river. Mercury stable isotope fractionation analysis showed that the mine tailings (δ202Hg: -0.36‰ ± 0.03‰) had a distinctive isotopic composition compared to background soils (δ202Hg: -2.30‰ ± 0.25‰). Similar differences in isotopic composition were observed between stream water that flowed through the tailings (particulate bound δ202Hg: -0.58‰; dissolved: -0.91‰) versus a background stream (particle-bound δ202Hg: -2.36‰; dissolved: -2.09‰). Within the reservoir sediment, the Hg isotopic composition indicated that the proportion of the Hg related to mine-release increased with THg concentrations. However, in the fish samples the opposite trend was observed-the degree of mine-related Hg was lower in fish with the higher THg concentrations. While sediment concentrations clearly show the influence of the mine, the relationship in fish is more complicated due to differences in methylmercury (MeHg) formation and the foraging behavior of different fish species. The fish tissue δ13C and Δ199Hg values indicate that there is a higher influence of mine-sourced Hg in fish feeding in a more sediment-based food web and less so in planktonic and littoral-based food webs. Identifying the relative proportion of Hg from local contaminated site can help inform remediation decisions, especially when the relationship between total Hg concentrations and sources do not show similar covariation between abiotic and biotic media.

2.
Environ Pollut ; 316(Pt 1): 120485, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279994

RESUMO

Mercury methylation frequently occurs at the active oxic/anoxic boundary between the sediment bed and water column of lakes and reservoirs. Previous studies suggest that the predominant mercury methylation zone moves to the water column during periods of stratification and that high potential methylation rates (Km) in sediment require oxygenated overlying water. However, simultaneous measurements of methylmercury (MeHg) production in both the sediment and water column remain limited. Understanding the relative importance of sediment versus water column methylation and the impact of seasonal stratification on these processes has important implications for managing MeHg production. This study measured Km and potential demethylation rates (Kdm) using stable isotope tracers of unfiltered inorganic mercury and MeHg in sediments and water of the littoral and profundal zones of a shallow branch of the Nacimiento Reservoir in California's central coastal range. Field sampling was conducted once during winter (well-mixed/oxygenated conditions) and once during late summer (thermally stratified/anoxic conditions). The results showed very high ambient MeHg concentrations in hypolimnetic waters (up to 7.5 ng L-1; 79% MeHg/total Hg). During late summer, littoral sediments had higher Km (0.024 day-1) compared to profundal sediments (0.013 day-1). Anoxic water column Km were of similar magnitude to Km in the sediment (0.03 day-1). Following turnover, profundal sediment Km did not change significantly, but water column Km became insignificant. Summer and winter sediment Kdm were higher in profundal (2.35, 3.54 day-1, respectively) compared to the littoral sediments (0.52, 2.56 day-1, respectively). When modelled, Km in the water column could account for approximately 40% of the hypolimnetic MeHg. Our modelling results show that the remaining MeHg in the hypolimnion could originate from the profundal sediment. While further study is needed, these results suggest that addressing methylation in the water column and profundal sediment are of equal importance to any remediation strategy.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Sedimentos Geológicos , Metilação , Água , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
3.
Chemosphere ; 294: 133675, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066080

RESUMO

Biochar can reduce lead (Pb) bioavailability to plants in metal-contaminated soil, but the ability of biochar to reduce the bioavailability of soil Pb to people and wildlife remains unknown. In this study, 17 biochars were evaluated as in situ amendments for three soils with distinct sources of Pb contamination (smelter emissions, ceramics waste, mining waste), hydrology (upland, well-drained soil vs submerged wetland soil), and biological receptors (human vs waterfowl). Biochars were made from blends of 30% manure (poultry litter or dairy manure) and 70% lignocellulosic material (wheat straw or grand fir shavings) and pyrolyzed at 300, 500, 700, and 900 °C. Soils were amended with 2% biochar (w/w) and incubated for 6 months. A suite of standard (e.g., EPA Method 1340) and experimental soil Pb bioaccessibility assays were used to assess the impact of the treatments. The results showed that biochar amendments to upland soils resulted in modest reductions in gastrointestinal Pb bioaccessibility (maximum reduction from 78 to 68% bioaccessibility as a percent of total, EPA Method 1340 at pH 2.5). In the wetland soil, sample redox status had a greater impact on Pb bioaccessibility than any amendment. Low-solubility Pb sulfides in this soil oxidized over the course of the study and no treatment was able to offset the increase in Pb bioaccessibility caused by this oxidation. The impact of redox status on Pb bioaccessibility was only evident when soil bioaccessibility assays were adapted to preserve sample redox status. This result highlights the importance of maintaining in situ redox conditions when processing/analyzing samples from low-oxygen environments and that soil remediation efforts should consider the role of redox conditions on Pb bioaccessibility.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Humanos , Chumbo , Oxirredução , Poluentes do Solo/análise
4.
Environ Pollut ; 277: 116869, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714131

RESUMO

Forest soils are among the world's largest repositories for long-term accumulation of atmospherically deposited mercury (Hg), and understanding the potential for remobilization through gaseous emissions, aqueous dissolution and runoff, or erosive particulate transport to down-gradient aquatic ecosystems is critically important for projecting ecosystem recovery. Forestry operations, especially clear-cut logging where most of the vegetaiton is removed, can influence Hg mobility/fluxes, foodweb dynamics, and bioaccumulation processes. This paper measured surface-air Hg fluxes from catchments in the Pacific Northwest, USA, to determine if there is a difference between forested and logged catchments. These measurements were conducted as part of a larger project on the impact of forestry operations on Hg cycling which include measurements of water fluxes as well as impacts on biota. Surface-air Hg fluxes were measured using a commonly applied dynamic flux chamber (DFC) method that incorporated diel and seasonal variability in elemental Hg (Hg0) fluxes at multiple forested and harvested catchments. The results showed that the forested ecosystem had depositional Hg0 fluxes throughout most of the year (annual mean: -0.26 ng/m2/h). In contrast, the harvested catchments showed mostly emission of Hg0 (annual mean: 0.63 ng/m2/h). Differences in solar radiation reaching the soil was the primary driver resulting in a shift from net deposition to emission in harvested catchments. The surface-air Hg fluxes were larger than the fluxes to water as runoff and accounted for 97% of the differences in Hg sequestered in forested versus harvested catchments.


Assuntos
Mercúrio , Poluentes do Solo , Ecossistema , Monitoramento Ambiental , Florestas , Mercúrio/análise , Noroeste dos Estados Unidos , Poluentes do Solo/análise
5.
Environ Toxicol Chem ; 40(7): 1829-1839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729607

RESUMO

Methylmercury (MeHg) is a highly toxic form of mercury that can bioaccumulate in fish tissue. Methylmercury is produced by anaerobic bacteria, many of which are also capable of MeHg degradation. In addition, demethylation in surface waters can occur via abiotic sunlight-mediated processes. The goal of the present study was to understand the relative importance of microbial Hg methylation/demethylation and abiotic photodemethylation that govern the mass of MeHg within an aquatic system. The study location was the Hells Canyon complex of 3 reservoirs on the Idaho-Oregon border, USA, that has fish consumption advisories as a result of elevated MeHg concentrations. Our study utilized stable isotope addition experiments to trace MeHg formation and degradation within the water column of the reservoirs to understand the relative importance of these processes on the mass of MeHg using the Water Quality Analysis Simulation Program. The results showed that rates of MeHg production and degradation within the water column were relatively low (<0.07 d-1 ) but sufficient to account for most of the MeHg observed with the system. Most MeHg production within the water column appeared to occur in the spring when much of the water column was in the processes of becoming anoxic. In the surface waters, rates of photodemethylation were relatively large (up to -0.25 d-1 ) but quickly decreased at depths >0.5 m below the surface. These results can be used to identify the relative importance of MeHg processes that can help guide reservoir management decisions. Environ Toxicol Chem 2021;40:1829-1839. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 271: 116369, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33401216

RESUMO

Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)-the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosm experiments that were conducted using different types of organic carbon soil amendments mixed with materials from the mine site. The results showed that >80% of the THg mobilized from the mine was bound to particles and that >90% of the annual Hg loading occurred during the period of elevated discharge during spring snowmelt. Methylation rates varied between different types of soil amendments and were correlated with the components of excitation emission matrices (EEMs) associated with humic acid fractions of organic matter. The mesocosm experiments showed that under anoxic conditions carbon amendments to tailings could significantly increase porewater MeHg concentrations (up to 13 ± 3 ng/L). In addition, the carbon amendments significantly increased THg partitioning into porewater. Overall, these results indicate that soil amendment applications to reduce surface erosion at abandoned mine sites could be effective at reducing particulate Hg mobilization to downstream waterbodies; however, some types of carbon amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Mercúrio/análise , América do Norte , Solo , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 737: 139619, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783819

RESUMO

The focus of this paper is to briefly discuss the major advances in scientific thinking regarding: a) processes governing the fate and transport of mercury in the environment; b) advances in measurement methods; and c) how these advances in knowledge fit in within the context of the Minamata Convention on Mercury. Details regarding the information summarized here can be found in the papers associated with this Virtual Special Issue of STOTEN.

8.
Sci Total Environ ; 707: 136031, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31869604

RESUMO

Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.

9.
Atmosphere (Basel) ; 10(4): 176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456887

RESUMO

We report on the continuous ambient measurements of total gaseous mercury (TGM) and several ancillary air quality parameters that were collected in Colorado Springs, CO. This urban area, which is located adjacent to the Front Range of the Rocky Mountains, is the second largest metropolitan area in Colorado and has a centrally located coal-fired power plant that installed mercury (Hg) emission controls the year prior to our study. There are few other Hg point sources within the city. Our results, which were obtained from a measurement site < 1 km from the power plant, show a distinct diel pattern in TGM, with peak concentrations occurring during the night (1.7 ± 0.3 ng m-3) and minimum concentrations mid-day (1.5 ± 0.2 ng m-3). The TGM concentrations were not correlated with wind originating from the direction of the plant or with sulfur dioxide (SO2) mixing ratios, and they were not elevated when the atmospheric mixing height was above the effective stack height. These findings suggest that the current Hg emissions from the CFPP did not significantly influence local TGM, and they are consistent with the facility's relatively low reported annual emissions of 0.20 kg Hg per year. Instead, variability in the regional signal, diurnal meteorological conditions, and/or near-surface emission sources appears to more greatly influence TGM at this urban site.

10.
Environ Pollut ; 253: 636-645, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31330355

RESUMO

Timber harvest has many effects on aquatic ecosystems, including changes in hydrological, biogeochemical, and ecological processes that can influence mercury (Hg) cycling. Although timber harvest's influence on aqueous Hg transformation and transport are well studied, the effects on Hg bioaccumulation are not. We evaluated Hg bioaccumulation, biomagnification, and food web structure in 10 paired catchments that were either clear-cut in their entirety, clear-cut except for an 8-m wide riparian buffer, or left unharvested. Average mercury concentrations in aquatic biota from clear-cut catchments were 50% higher than in reference catchments and 165% higher than in catchments with a riparian buffer. Mercury concentrations in aquatic invertebrates and salamanders were not correlated with aqueous THg or MeHg concentrations, but rather treatment effects appeared to correspond with differences in the utilization of terrestrial and aquatic basal resources in the stream food webs. Carbon and nitrogen isotope data suggest that a diminished shredder niche in the clear-cut catchments contributed to lower basal resource diversity compared with the reference of buffered treatments, and that elevated Hg concentrations in the clear-cut catchments reflect an increased reliance on aquatic resources in clear-cut catchments. In contrast, catchments with riparian buffers had higher basal resource diversity than the reference catchments, indicative of more balanced utilization of terrestrial and aquatic resources. Further, following timber harvest THg concentrations in riparian songbirds were elevated, suggesting an influence of timber harvest on Hg export to riparian food webs. These data, coupled with comparisons of individual feeding guilds, indicate that changes in organic matter sources and associated effects on stream food web structure are important mechanisms by which timber harvest modifies Hg bioaccumulation in headwater streams and riparian consumers.


Assuntos
Cadeia Alimentar , Agricultura Florestal/métodos , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biota , Carbono , Ecossistema , Invertebrados , Mercúrio/análise , Compostos de Metilmercúrio , Isótopos de Nitrogênio , Rios/química , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 52(17): 9556-9561, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067020

RESUMO

Mercury is a global pollutant released into the biosphere by varied human activities including coal combustion, mining, artisanal gold mining, cement production, and chemical production. Once released to air, land and water, the addition of carbon atoms to mercury by bacteria results in the production of methylmercury, the toxic form that bioaccumulates in aquatic and terrestrial food chains resulting in elevated exposure to humans and wildlife. Global recognition of the mercury contamination problem has resulted in the Minamata Convention on Mercury, which came into force in 2017. The treaty aims to protect human health and the environment from human-generated releases of mercury curtailing its movement and transformations in the biosphere. Coincident with the treaty's coming into force, the 13th International Conference of Mercury as a Global Pollutant (ICMGP-13) was held in Providence, Rhode Island USA. At ICMGP-13, cutting edge research was summarized and presented to address questions relating to global and regional sources and cycling of mercury, how that mercury is methylated, the effects of mercury exposure on humans and wildlife, and the science needed for successful implementation of the Minamata Convention. Human activities have the potential to enhance mercury methylation by remobilizing previously released mercury, and increasing methylation efficiency. This synthesis concluded that many of the most important factors influencing the fate and effects of mercury and its more toxic form, methylmercury, stem from environmental changes that are much broader in scope than mercury releases alone. Alterations of mercury cycling, methylmercury bioavailability and trophic transfer due to climate and land use changes remain critical uncertainties in effective implementation of the Minamata Convention. In the face of these uncertainties, important policy and management actions are needed over the short-term to support the control of mercury releases to land, water and air. These include adequate monitoring and communication on risk from exposure to various forms of inorganic mercury as well as methylmercury from fish and rice consumption. Successful management of global and local mercury pollution will require integration of mercury research and policy in a changing world.


Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Poluição Ambiental , Humanos , Rhode Island
13.
Ambio ; 47(2): 141-169, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29388127

RESUMO

The environmental cycling of mercury (Hg) can be affected by natural and anthropogenic perturbations. Of particular concern is how these disruptions increase mobilization of Hg from sites and alter the formation of monomethylmercury (MeHg), a bioaccumulative form of Hg for humans and wildlife. The scientific community has made significant advances in recent years in understanding the processes contributing to the risk of MeHg in the environment. The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbations that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation. We focus on the major challenges associated with each type of alteration, as well as management opportunities that could lessen both MeHg levels in biota and exposure to humans. For example, our understanding of approximate response times to changes in Hg inputs from various sources or landscape alterations could lead to policies that prioritize the avoidance of certain activities in the most vulnerable systems and sequestration of Hg in deep soil and sediment pools. The remediation of Hg pollution from historical mining and other industries is shifting towards in situ technologies that could be less disruptive and less costly than conventional approaches. Contemporary artisanal gold mining has well-documented impacts with respect to Hg; however, significant social and political challenges remain in implementing effective policies to minimize Hg use. Much remains to be learned as we strive towards the meaningful application of our understanding for stakeholders, including communities living near Hg-polluted sites, environmental policy makers, and scientists and engineers tasked with developing watershed management solutions. Site-specific assessments of MeHg exposure risk will require new methods to predict the impacts of anthropogenic perturbations and an understanding of the complexity of Hg cycling at the local scale.


Assuntos
Mercúrio/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Exposição Ambiental , Monitoramento Ambiental , Humanos , Compostos de Metilmercúrio , Mineração , Solo
14.
Environ Sci Technol ; 52(4): 1971-1980, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29366328

RESUMO

Land-use activities can alter hydrological and biogeochemical processes that can affect the fate, transformation, and transport of mercury (Hg). Previous studies in boreal forests have shown that forestry operations can have profound but variable effects on Hg export and methylmercury (MeHg) formation. The Pacific Northwest is an important timber producing region that receives large atmospheric Hg loads, but the impact of forest harvesting on Hg mobilization has not been directly studied and was the focus of our investigation. Stream discharge was measured continuously, and Hg and MeHg concentrations were measured monthly for 1.5 years following logging in three paired harvested and unharvested (control) catchments. There was no significant difference in particulate-bound Hg concentrations or loads in the harvested and unharvested catchments which may have resulted from forestry practices aimed at minimizing erosion. However, the harvested catchments had significantly higher discharge (32%), filtered Hg concentrations (28%), filtered Hg loads (80%), and dissolved organic carbon (DOC) loads (40%) compared to forested catchments. MeHg concentrations were low (mostly <0.05 ng L-1) in harvested, unharvested, and downstream samples due to well-drained/unsaturated soil conditions and steep slopes with high energy eroding stream channels that were not conducive to the development of anoxic conditions that support methylation. These results have important implications for the role forestry operations have in affecting catchment retention and export of Hg pollution.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Noroeste dos Estados Unidos , Oregon , Movimentos da Água
15.
Environ Pollut ; 222: 32-41, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28104341

RESUMO

Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management actions can have an impact on the sediment-porewater characteristics that affect MeHg production. Such findings are also relevant to natural water systems that experience wetting and drying cycles, such as floodplains and ombrotrophic wetlands.


Assuntos
Inundações , Sedimentos Geológicos/análise , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Lagos/química , Oregon , Rios/química , Áreas Alagadas
16.
Sci Total Environ ; 568: 1213-1226, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27320732

RESUMO

Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.


Assuntos
Poluentes Ambientais/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Vertebrados/metabolismo , Animais , Canadá , Monitoramento Ambiental , Poluentes Ambientais/análise , Peixes/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , México , Estados Unidos
17.
Sci Total Environ ; 568: 727-738, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27130329

RESUMO

Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for >16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3±6.5µgkg(-1)) and canal (28.6±6.9µgkg(-1)) sites, and lowest in stream (20.7±4.6µgkg(-1)) and estuarine (23.6±5.6µgkg(-1)) sites, which was partially a result of differences in grain size related to hydrologic gradients. By environmental setting, open-water (36.8±2.2µgkg(-1)) and forested (32.0±2.7µgkg(-1)) sites generally had the highest THg concentrations, followed by wetland sites (28.9±1.7µgkg(-1)), rangeland (25.5±1.5µgkg(-1)), agriculture (23.4±2.0µgkg(-1)), and urban (22.7±2.1µgkg(-1)) sites. MeHg concentrations also were highest in lakes (0.55±0.05µgkg(-1)) and canals (0.54±0.11µgkg(-1)), but, in contrast to THg, MeHg concentrations were lowest in open-water sites (0.22±0.03µgkg(-1)). The median percent MeHg (relative to THg) for the western region was 0.7%, indicating an overall low methylation efficiency; however, a significant subset of data (n>100) had percentages that represent elevated methylation efficiency (>6%). MeHg concentrations were weakly correlated with THg (r(2)=0.25) across western North America. Overall, these results highlight the large spatial variability in sediment THg and MeHg concentrations throughout western North America and underscore the important roles that landscape and land-use characteristics have on the MeHg cycle.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Territórios do Noroeste , Noroeste dos Estados Unidos
18.
Sci Total Environ ; 568: 638-650, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27015962

RESUMO

Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

19.
Sci Total Environ ; 568: 651-665, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936663

RESUMO

Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

20.
Environ Sci Technol ; 49(16): 9750-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26189758

RESUMO

Prior to its closure, the base-metal smelter in Flin Flon, Manitoba, Canada was one of the North America's largest mercury (Hg) emission sources. Our project objective was to understand the exchange of Hg between the soil and the air before and after the smelter closure. Field and laboratory Hg flux measurements were conducted to identify the controlling variables and used for spatial and temporal scaling. Study results showed that deposition from the smelter resulted in the surrounding soil being enriched in Hg (up to 99 µg g(-1)) as well as other metals. During the period of smelter operation, air concentrations were elevated (30 ± 19 ng m(-3)), and the soil was a net Hg sink (daily flux: -3.8 ng m(-2) h(-1)). Following the smelter closure, air Hg(0) concentrations were reduced, and the soils had large emissions (daily flux: 108 ng m(-2) h(-1)). The annual scaling of soil Hg emissions following the smelter closure indicated that the landscape impacted by smelter deposition emitted or re-emitted almost 100 kg per year. Elevated soil Hg concentrations and emissions are predicted to continue for hundreds of years before background concentrations are re-established. Overall, the results indicate that legacy Hg deposition will continue to cycle in the environment long after point-source reductions.


Assuntos
Poluentes Atmosféricos/análise , Ar , Indústrias , Mercúrio/análise , Poluentes do Solo/análise , Solo/química , Geografia , Manitoba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA