Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0295031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536835

RESUMO

Addressing soil nutrient degradation and global warming requires novel solutions. Enhanced weathering using crushed basalt rock is a promising dual-action strategy that can enhance soil health and sequester carbon dioxide. This study examines the short-term effects of basalt amendment on spring oat (Avena sativa L.) during the 2022 growing season in NE England. The experimental design consisted of four blocks with control and basalt-amended plots, and two cultivation types within each treatment, laid out in a split plot design. Basalt (18.86 tonnes ha-1) was incorporated into the soil during seeding. Tissue, grain and soil samples were collected for yield, nutrient, and pH analysis. Basalt amendment led to significantly higher yields, averaging 20.5% and 9.3% increases in direct drill and ploughed plots, respectively. Soil pH was significantly higher 256 days after rock application across cultivation types (direct drill: on average 6.47 vs. 6.76 and ploughed: on average 6.69 vs. 6.89, for control and basalt-amended plots, respectively), likely due to rapidly dissolving minerals in the applied basalt, such as calcite. Indications of growing season differences in soil pH are observed through direct measurement of lower manganese and iron uptake in plants grown on basalt-amended soil. Higher grain and tissue potassium, and tissue calcium uptake were observed in basalt-treated crops. Notably, no accumulation of potentially toxic elements (arsenic, cadmium, chromium, nickel) was detected in the grain, indicating that crops grown using this basaltic feedstock are safe for consumption. This study indicates that basalt amendments can improve agronomic performance in sandy clay-loam agricultural soil under temperate climate conditions. These findings offer valuable insights for producers in temperate regions who are considering using such amendments, demonstrating the potential for improved crop yields and environmental benefits while ensuring crop safety.


Assuntos
Agricultura , Avena , Silicatos , Estações do Ano , Solo , Grão Comestível , Produtos Agrícolas
2.
Sci Rep ; 13(1): 22863, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129628

RESUMO

Biochar is an engineered carbon-rich substance used for soil improvement, environmental management, and other diverse applications. To date, the understanding of how biomass affects biochar microstructure has been limited due to the complexity of analysis involved in tracing the changes in the physical structure of biomass as it undergoes thermochemical conversion. In this study, we used synchrotron x-ray micro-tomography to visualize changes in the internal structure of biochar from diverse feedstock (miscanthus straw pellets, wheat straw pellets, oilseed rape straw pellets, and rice husk) during pyrolysis by collecting a sequence of 3D scans at 50 °C intervals during progressive heating from 50 °C to 800 °C. The results show a strong dependence of biochar porosity on feedstock as well as pyrolysis temperature, with observed porosity in the range of 7.41-60.56%. Our results show that the porosity, total surface area, pore volume, and equivalent diameter of the largest pore increases with increasing pyrolysis temperature up to about 550 °C. The most dramatic development of pore structure occurred in the temperature range of 350-450 °C. This understanding is pivotal for optimizing biochar's properties for specific applications in soil improvement, environmental management, and beyond. By elucidating the nuanced variations in biochar's physical characteristics across different production temperatures and feedstocks, this research advances the practical application of biochar, offering significant benefits in agricultural, environmental, and engineering contexts.


Assuntos
Carvão Vegetal , Pirólise , Biomassa , Temperatura , Carvão Vegetal/química , Solo/química
3.
Sci Total Environ ; 714: 136857, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018989

RESUMO

Biochar can significantly alter water relations in soil and therefore, can play an important part in increasing the resilience of agricultural systems to drought conditions. To enable matching of biochar to soil constraints and application needs, a thorough understanding of the impact of biochar properties on relevant soil parameters is necessary. This meta-analysis of the available literature for the first time quantitatively assess the effect of not just biochar application, but different biochar properties on the full sets of key soil hydraulic parameters, i.e., the available water content (AWC), saturated hydraulic conductivity (Ksat), field capacity (FC), permanent wilting point (PWP) and total porosity (TP). The review shows that biochar increased soil water retention and decreased Ksat in sandy soils and increased Ksat and hence decreased runoff in clayey soils. On average, regardless of soil type, biochar application increased AWC (28.5%), FC (20.4%), PWP (16.7%) and TP (9.1%), while it reduced Ksat (38.7%) and BD (0.8%). Biochar was most effective in improving soil water properties in coarse-textured soils with application rates between 30 and 70 t/ha. The key factors influencing biochar performance were particle size, specific surface area and porosity indicating that both soil-biochar inter-particle and biochar intra-particle pores are important factors. To achieve optimum water relations in sandy soils (>60% sand and <20% clay), biochar with a small particle size (<2 mm) and high specific surface area and porosity should be applied. In clayey soil (>50% clay), <30 t/ha of a high surface area biochar is ideal.


Assuntos
Solo , Água , Agricultura , Carvão Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA