Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 75(1): 51-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19954434

RESUMO

Photoactive analogs of farnesyl diphosphate (FPP) are useful probes in studies of enzymes that employ this molecule as a substrate. Here, we describe the preparation and properties of two new FPP analogs that contain diazotrifluoropropanoyl photophores linked to geranyl diphosphate via amide or ester linkages. The amide-linked analog (3) was synthesized in 32P-labeled form from geraniol in seven steps. Experiments with Saccharomyces cerevisiae protein farnesyltransferase (ScPFTase) showed that 3 is an alternative substrate for the enzyme. Photolysis experiments with [(32)P]3 demonstrate that this compound labels the beta-subunits of both farnesyltransferase and geranylgeranyltransferase (types 1 and 2). However, the amide-linked probe 3 undergoes a rearrangement to a photochemically unreactive isomeric triazolone upon long term storage making it inconvenient to use. To address this stability issue, the ester-linked analog 4 was prepared in six steps from geraniol. Computational analysis and X-ray crystallographic studies suggest that 4 binds to protein farnesyl transferase (PFTase) in a similar fashion as FPP. Compound 4 is also an alternative substrate for PFTase, and a 32P-labeled form selectively photocrosslinks the beta-subunit of ScPFTase as well as E. coli farnesyldiphosphate synthase and a germacrene-producing sesquiterpene synthase from Nostoc sp. strain PCC7120 (a cyanobacterial source). Finally, nearly exclusive labeling of ScPFTase in crude E. coli extract was observed, suggesting that [32P]4 manifests significant selectivity and should hence be useful for identifying novel FPP-utilizing enzymes in crude protein preparations.


Assuntos
Fosfatos de Poli-Isoprenil/síntese química , Sesquiterpenos/síntese química , Sítios de Ligação , Farnesiltranstransferase/metabolismo , Cinética , Marcadores de Fotoafinidade , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
2.
J Org Chem ; 61(22): 7738-7745, 1996 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11667728

RESUMO

Farnesyl pyrophosphate (FPP) is involved in a large number of cellular processes including the prenylation of transforming mutants of Ras proteins implicated in cancer. Photoactive analogs could provide useful information about enzyme active sites that bind farnesyl pyrophosphate; however, the availability of such compounds is extremely limited. Molecules that incorporate benzophenone moieties are attractive photoaffinity labeling reagents because of their useful photochemical properties. Here, the syntheses of two compounds, 3a and 3b, containing para- and meta-substituted benzoylbenzoates are described. Compounds 3a and 3b are competitive inhibitors (with respect to FPP) of yeast protein farnesyltransferase (PFTase) with K(i) values of 910 and 380 nM, respectively. Both compounds inactivate PFTase upon photolysis, resulting in as much as 44% inactivation of enzyme activity. Photolysis of PFTase in the presence of [(32)P]3a or of [(32)P]3b results in preferential labeling of the beta subunit, suggesting that this subunit is involved in prenyl group recognition. These compounds should be valuable tools for studying enzymes that utilize FPP as a substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA