Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Elife ; 132024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696239

RESUMO

The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.


Assuntos
Genoma Bacteriano , Redes e Vias Metabólicas , Software , Redes e Vias Metabólicas/genética , Biologia Computacional/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação
2.
Microorganisms ; 12(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38792759

RESUMO

Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.

3.
Environ Microbiol ; 26(3): e16598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444221

RESUMO

The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.


Assuntos
Biodiversidade , Comportamento Predatório , Animais , Biomassa , Planeta Terra , Ecossistema
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366040

RESUMO

Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.


Assuntos
Fontes Hidrotermais , Animais , Biomassa , Fontes Hidrotermais/microbiologia , Comportamento Predatório , Filogenia , Bactérias/genética
5.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076927

RESUMO

Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.

6.
Microorganisms ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138100

RESUMO

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin.

7.
Front Microbiol ; 14: 1324080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029175
8.
Nat Commun ; 14(1): 7768, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012208

RESUMO

Previous studies of microbial communities in subseafloor sediments reported that microbial abundance and diversity decrease with sediment depth and age, and microbes dominating at depth tend to be a subset of the local seafloor community. However, the existence of geographically widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin (Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and archaea along thermal, geochemical and cell count gradients. We find that the composition and distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as temperatures remain moderate, but downcore increasing temperatures beyond ca. 45 ºC override other factors. Consistently, MAG size and diversity decrease with increasing temperature, indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition towards a specialized deep, hot biosphere.


Assuntos
Archaea , Crenarchaeota , Archaea/genética , Metagenoma/genética , Sedimentos Geológicos/química , Filogenia , Bactérias/genética , RNA Ribossômico 16S
9.
ISME J ; 17(11): 1907-1919, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658181

RESUMO

Analyses of gene expression of subsurface bacteria and archaea provide insights into their physiological adaptations to in situ subsurface conditions. We examined patterns of expressed genes in hydrothermally heated subseafloor sediments with distinct geochemical and thermal regimes in Guaymas Basin, Gulf of California, Mexico. RNA recovery and cell counts declined with sediment depth, however, we obtained metatranscriptomes from eight sites at depths spanning between 0.8 and 101.9 m below seafloor. We describe the metabolic potential of sediment microorganisms, and discuss expressed genes involved in tRNA, mRNA, and rRNA modifications that enable physiological flexibility of bacteria and archaea in the hydrothermal subsurface. Microbial taxa in hydrothermally influenced settings like Guaymas Basin may particularly depend on these catalytic RNA functions since they modulate the activity of cells under elevated temperatures and steep geochemical gradients. Expressed genes for DNA repair, protein maintenance and circadian rhythm were also identified. The concerted interaction of many of these genes may be crucial for microorganisms to survive and to thrive in the Guaymas Basin subsurface biosphere.


Assuntos
Archaea , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Filogenia , Bactérias , Expressão Gênica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
10.
Mol Ecol ; 32(11): 2750-2765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852430

RESUMO

Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.


Assuntos
Ecossistema , Micobioma , Fungos/genética , Micobioma/genética , China , Microbiologia da Água , Água do Mar/microbiologia
11.
Nat Commun ; 14(1): 656, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746960

RESUMO

Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.


Assuntos
Microbiota , Água do Mar , Água do Mar/microbiologia , Bactérias/metabolismo , Metagenoma , Microbiota/genética , Água/metabolismo
12.
Commun Biol ; 5(1): 1055, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192584

RESUMO

Despite the environmental challenges and nutrient scarcity, the geographically isolated Challenger Deep in Mariana trench, is considered a dynamic hotspot of microbial activity. Hadal viruses are the least explored microorganisms in Challenger Deep, while their taxonomic and functional diversity and ecological impact on deep-sea biogeochemistry are poorly described. Here, we collect 13 sediment cores from slope and bottom-axis sites across the Challenger Deep (down to ~11 kilometers depth), and identify 1,628 previously undescribed viral operational taxonomic units at species level. Community-wide analyses reveals 1,299 viral genera and distinct viral diversity across the trench, which is significantly higher at the bottom-axis vs. slope sites of the trench. 77% of these viral genera have not been previously identified in soils, deep-sea sediments and other oceanic settings. Key prokaryotes involved in hadal carbon and nitrogen cycling are predicted to be potential hosts infected by these viruses. The detected putative auxiliary metabolic genes suggest that viruses at Challenger Deep could modulate the carbohydrate and sulfur metabolisms of their potential hosts, and stabilize host's cell membranes under extreme hydrostatic pressures. Our results shed light on hadal viral metabolic capabilities, contribute to understanding deep sea ecology and on functional adaptions of hadal viruses for future research.


Assuntos
Carbono , Solo , Carboidratos , Nitrogênio , Enxofre
14.
Nat Commun ; 13(1): 1515, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314706

RESUMO

Hadal trenches are the deepest and most remote regions of the ocean. The 11-kilometer deep Challenger Deep is the least explored due to the technical challenges of sampling hadal depths. It receives organic matter and heavy metals from the overlying water column that accumulate differently across its V-shaped topography. Here, we collected sediments across the slope and bottom-axis of the Challenger Deep that enable insights into its in situ microbial communities. Analyses of 586 metagenome-assembled genomes retrieved from 37 metagenomes show distinct diversity and metabolic capacities between bottom-axis and slope sites. 26% of prokaryotic 16S rDNA reads in metagenomes were novel, with novelty increasing with water and sediment depths. These predominantly heterotrophic microbes can recycle macromolecules and utilize simple and complex hydrocarbons as carbon sources. Metagenome and metatranscriptome data support reduction and biotransformation of arsenate for energy gain in sediments that present a two-fold greater accumulation of arsenic compared to non-hadal sites. Complete pathways for anaerobic ammonia oxidation are predominantly identified in genomes recovered from bottom-axis sediments compared to slope sites. Our results expand knowledge of microbially-mediated elemental cycling in hadal sediments, and reveal differences in distribution of processes involved in nitrogen loss across the trench.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Sedimentos Geológicos , Processos Heterotróficos , Metagenoma/genética , Microbiota/genética , Água/metabolismo
15.
J Eukaryot Microbiol ; 69(5): e12912, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35325496

RESUMO

Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end products to increase the host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host specificity and coevolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.


Assuntos
Cilióforos , Oxigênio , Anaerobiose , Cilióforos/genética , Ecossistema , Filogenia , Simbiose
16.
Environ Microbiol ; 24(4): 1818-1834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315564

RESUMO

Protists are integral to marine food webs and biogeochemical cycles; however, there is a paucity of data describing specific ecological niches for some of the most abundant taxa in marker gene libraries. Syndiniales are one such group, often representing the majority of sequence reads recovered from picoplankton samples across the global ocean. However, the prevalence and impacts of syndinian parasitism in marine environments remain unclear. We began to address these critical knowledge gaps by generating a high-resolution time series (March-October 2018) in a productive coastal pond. Seasonal shifts in protist populations, including parasitic Syndiniales, were documented during periods of higher primary productivity and increased summer temperature-driven stratification. Elevated concentrations of infected hosts and free-living parasite spores occurred at nearly monthly intervals in July, August, and September. We suggest intensifying stratification during this period correlated with the increased prevalence of dinoflagellates that were parasitized by Group II Syndiniales. Infections in some protist populations were comparable to previously reported large single-taxon dinoflagellate blooms. Infection dynamics in Salt Pond demonstrated the propagation of syndinian parasites through mixed protist assemblages and highlighted patterns of host/parasite interactions that better reflect many other marine environments where single taxon blooms are uncommon.


Assuntos
Dinoflagellida , Doenças Parasitárias , Dinoflagellida/genética , Ecossistema , Interações Hospedeiro-Parasita , Humanos , Lagoas
17.
Front Microbiol ; 13: 831828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356530

RESUMO

Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.

18.
Environ Microbiol ; 24(7): 3051-3062, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099107

RESUMO

Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Sobrevivência Celular , DNA , Recombinação Homóloga
19.
Front Microbiol ; 13: 1119051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687637
20.
Nat Microbiol ; 6(11): 1341-1342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34697462

Assuntos
Macrófagos , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA