Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Blood ; 112(9): 3638-49, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18664627

RESUMO

Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures. All 3 ligands induced similar level of VEGFR-2 tyrosine phosphorylation in the presence of NRP1. In contrast, sprouting angiogenesis in differentiating embryonic stem cells (embryoid bodies), formation of branching pericyte-embedded vessels in subcutaneous matrigel plugs, and sprouting of intersegmental vessels in developing zebrafish were induced by VEGF-A165 and VEGF-E-NZ2 but not by VEGF-A121. Analyses of recombinant factors with NRP1-binding gain- and loss-of-function properties supported the conclusion that NRP1 is critical for VEGF-induced sprouting and branching of endothelial cells. Signal transduction antibody arrays implicated NRP1 in VEGF-induced activation of p38MAPK. Inclusion of the p38MAPK inhibitor SB203580 in VEGF-A165-containing matrigel plugs led to attenuated angiogenesis and poor association with pericytes. Our data strongly indicate that the ability of VEGF ligands to bind NRP1 influences p38MAPK activation, and formation of functional, pericyte-associated vessels.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Geneticamente Modificados , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Modelos Biológicos , Neovascularização Fisiológica , Neuropilina-1/genética , Pericitos/citologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
2.
Stem Cells ; 25(12): 2987-95, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17702981

RESUMO

The vascular endothelial growth factor (VEGF) family and its receptors are important for vascular development and maintenance of blood vessels, as well as for angiogenesis, the formation of new vessels. Loss of VEGF receptor-2 (VEGFR-2; designated Flk-1 in mouse) results in arrest of vascular and hematopoietic development in vivo. We used lentiviral transduction to reconstitute VEGFR-2 expression in flk1-/- embryonic stem (ES) cells. VEGF-induced vasculogenesis and sprouting angiogenesis were rescued in transduced ES cultures differentiating in vitro as EBs. Although the transgene was expressed in the pluripotent stem cells and lacked linage restriction during differentiation, the extent of endothelial recruitment was similar to that in wild-type EBs. Reconstitution of VEGFR-2 in flk1-/- ES cells allowed only precommitted precursors to differentiate into functional endothelial cells able to organize into vascular structures. Chimeric EB cultures composed of wild-type ES cells mixed with flk1-/- ES cells or reconstituted VEGFR-2-expressing ES cells were created. In the chimeric cultures, flk1-/- endothelial precursors were excluded from wild-type vessel structures, whereas reconstituted VEGFR-2-expressing precursors became integrated together with wild-type endothelial cells to form chimeric vessels. We conclude that maturation of endothelial precursors, as well as organization into vascular structures, requires expression of VEGFR-2. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Embrionárias/fisiologia , Endotélio Vascular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lentivirus/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/virologia , Endotélio Vascular/citologia , Endotélio Vascular/virologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Transdução de Sinais/genética , Transdução Genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
3.
Genes Dev ; 21(16): 2055-68, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699752

RESUMO

The development of the embryonic vascular system into a highly ordered network requires precise control over the migration and branching of endothelial cells (ECs). We have previously identified angiomotin (Amot) as a receptor for the angiogenesis inhibitor angiostatin. Furthermore, DNA vaccination targeting Amot inhibits angiogenesis and tumor growth. However, little is known regarding the role of Amot in physiological angiogenesis. We therefore investigated the role of Amot in embryonic neovascularization during zebrafish and mouse embryogenesis. Here we report that knockdown of Amot in zebrafish reduced the number of filopodia of endothelial tip cells and severely impaired the migration of intersegmental vessels. We further show that 75% of Amot knockout mice die between embryonic day 11 (E11) and E11.5 and exhibit severe vascular insufficiency in the intersomitic region as well as dilated vessels in the brain. Furthermore, using ECs differentiated from embryonic stem (ES) cells, we demonstrate that Amot-deficient cells have intact response to vascular endothelial growth factor (VEGF) in regard to differentiation and proliferation. However, the chemotactic response to VEGF was abolished in Amot-deficient cells. We provide evidence that Amot is important for endothelial polarization during migration and that Amot controls Rac1 activity in endothelial and epithelial cells. Our data demonstrate a critical role for Amot during vascular patterning and endothelial polarization.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas dos Microfilamentos/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Angiomotinas , Animais , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Primers do DNA/genética , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Neovascularização Fisiológica/genética , Fenótipo , Gravidez , Pseudópodes/ultraestrutura , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA