Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38298132

RESUMO

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Assuntos
Receptores do FSH , Salmo salar , Masculino , Animais , Camundongos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Peixe-Zebra/genética , Maturidade Sexual/genética , Hormônio Foliculoestimulante/metabolismo , Testículo/metabolismo
2.
PLoS Genet ; 18(12): e1010529, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508414

RESUMO

Light cues vary along the axis of periodicity, intensity and spectrum and perception of light is dependent on the photoreceptive capacity encoded within the genome and the opsins expressed. A global approach was taken to analyze the photoreceptive capacity and the effect of differing light conditions on a developing teleost prior to first feeding. The transcriptomes of embryos and alevins of Atlantic salmon (Salmo salar) exposed to different light conditions were analyzed, including a developmental series and a circadian profile. The results showed that genes mediating nonvisual photoreception are present prior to hatching when the retina is poorly differentiated. The clock genes were expressed early, but the circadian profile showed that only two clock genes were significantly cycling before first feeding. Few genes were differentially expressed between day and night within a light condition; however, many genes were significantly different between light conditions, indicating that light environment has an impact on the transcriptome during early development. Comparing the transcriptome data from constant conditions to periodicity of white light or different colors revealed overrepresentation of genes related to photoreception, eye development, muscle contraction, degradation of metabolites and cell cycle among others, and in constant light, several clock genes were upregulated. In constant white light and periodicity of green light, genes associated with DNA replication, chromatin remodeling, cell division and DNA repair were downregulated. The study implies a direct influence of light conditions on the transcriptome profile at early developmental stages, by a complex photoreceptive system where few clock genes are cycling.


Assuntos
Relógios Circadianos , Animais , Relógios Circadianos/genética , Fotoperíodo , Perfilação da Expressão Gênica , Transcriptoma/genética , Estágios do Ciclo de Vida , Ritmo Circadiano/genética
3.
Front Endocrinol (Lausanne) ; 13: 826920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370944

RESUMO

Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17ß-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.


Assuntos
Salmo salar , Animais , Expressão Gênica , Gonadotropinas/metabolismo , Gonadotropinas/farmacologia , Gonadotropinas Hipofisárias/genética , Masculino , Salmo salar/genética , Salmo salar/metabolismo , Maturidade Sexual/genética
4.
Sci Total Environ ; 800: 149460, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391158

RESUMO

Developing organisms are especially vulnerable to environmental stressors. Crude oil exposure in early life stages of fish result in multiple functional and developmental defects, including cardiac dysfunction and abnormal and smaller eyes. Phenanthrene (Phe) has a reversible impact on cardiac function, and under exposure Phe reduces cardiac contractility. Exposure to a known L-type channel blocker, nicardipine hydrochloride (Nic) also disrupts cardiac function and creates eye deformities. We aimed to investigate whether cardiac dysfunction was the major underlying mechanism of crude oil-, Phe- and Nic-induced eye malformations. We exposed Atlantic haddock (Melanogrammus aeglefinus) early embryos to Nic and crude oil (Oil) and late embryos/early larvae to Phe exposure. All three exposures resulted in cardiac abnormalities and lead to severe, eye, jaw and spinal deformities at early larval stages. At 3 days post hatching, larvae from the exposures and corresponding controls were dissected. Eyes, trunk, head and yolk sac were subjected to lipid profiling, and eyes were also subjected to transcriptomic profiling. Among most enriched pathways in the eye transcriptomes were fatty acid metabolism, calcium signaling and phototransduction. Changes in lipid profiles and the transcriptome suggested that the dysfunctional and abnormal eyes in our exposures were due to both disruption of signaling pathways and insufficient supply of essential fatty acids and other nutrients form the yolk.


Assuntos
Cardiopatias , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Embrião não Mamífero/química , Peixes , Larva , Lipídeos , Poluição por Petróleo/efeitos adversos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Genomics ; 113(6): 3666-3680, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403763

RESUMO

Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.


Assuntos
Copépodes , Doenças dos Peixes , Parasitos , Aclimatação , Animais , Copépodes/genética , Copépodes/parasitologia , Doenças dos Peixes/genética , Parasitos/genética , Transcriptoma
6.
Front Cell Dev Biol ; 9: 657192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33942021

RESUMO

Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.

8.
Evol Appl ; 14(2): 446-461, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664787

RESUMO

Most Atlantic salmon (Salmo salar L.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age ~10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long-term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega-3 metabolism, smoltification, and disease resistance. We used a Pool-seq approach (n = 10-40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and included cadm1 on Chr 13 and ppargc1a on Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, including igf1 on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life-history traits in fish.

9.
BMC Genomics ; 21(1): 805, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213387

RESUMO

BACKGROUND: With declining wild fish populations, farmed salmon has gained popularity as a source for healthy long-chain highly unsaturated fatty acids (LC-HUFA). However, the introduction of plant oil in farmed salmon feeds has reduced the content of these beneficial LC-HUFA. The synthetic capability for LC-HUFAs depends upon the dietary precursor fatty acids and the genetic potential, thus there is a need for in-depth understanding of LC-HUFA synthetic genes and their interactions with other genes involved in lipid metabolism. Several key genes of LC-HUFA synthesis in salmon belong to the fatty acid desaturases 2 (fads2) family. The present study applied whole transcriptome analysis on two CRISPR-mutated salmon strains (crispants), 1) Δ6abc/5Mt with mutations in Δ5fads2, Δ6fads2-a, Δ6fads2-b and Δ6fads2-c genes, and 2) Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c genes. Our purpose is to evaluate the genetic effect fads2 mutations have on other lipid metabolism pathways in fish, as well as to investigate mosaicism in a commercial species with a very long embryonal period. RESULTS: Both Δ6abc/5Mt and Δ6bcMt crispants demonstrated high percentage of indels within all intended target genes, though different indel types and percentage were observed between individuals. The Δ6abc/5Mt fish displayed several disruptive indels which resulted in over 100 differentially expressed genes (DEGs) enriched in lipid metabolism pathways in liver. This includes up-regulation of srebp1 genes which are known key transcription regulators of lipid metabolism as well as a number of down-stream genes involved in fatty acid de-novo synthesis, fatty acid ß-oxidation and lipogenesis. Both elovl5 and elovl2 genes were not changed, suggesting that the genes were not targeted by Srebp1. The mutation of Δ6bcMt surprisingly resulted in over 3000 DEGs which were enriched in factors encoding genes involved in mRNA regulation and stability. CONCLUSIONS: CRISPR-Cas9 can efficiently mutate multiple fads2 genes simultaneously in salmon. The results of the present study have provided new information on the transcriptional regulations of lipid metabolism genes after reduction of LC-HUFA synthesis pathways in salmon.


Assuntos
Salmo salar , Animais , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese , Fígado/metabolismo , Mutagênese , Salmo salar/genética
10.
Sci Rep ; 10(1): 18042, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093479

RESUMO

Genetic introgression of escaped farmed Atlantic salmon (Salmo salar) into wild populations is a major environmental concern for the salmon aquaculture industry. Using sterile fish in commercial aquaculture operations is, therefore, a sustainable strategy for bio-containment. So far, the only commercially used methodology for producing sterile fish is triploidization. However, triploid fish are less robust. A novel approach in which to achieve sterility is to produce germ cell-free salmon, which can be accomplished by knocking out the dead-end (dnd) gene using CRISPR-Cas9. The lack of germ cells in the resulting dnd crispants, thus, prevents reproduction and inhibits subsequent large-scale production of sterile fish. Here, we report a rescue approach for producing germ cells in Atlantic salmon dnd crispants. To achieve this, we co-injected the wild-type (wt) variant of salmon dnd mRNA together with CRISPR-Cas9 constructs targeting dnd into 1-cell stage embryos. We found that rescued one-year-old fish contained germ cells, type A spermatogonia in males and previtellogenic primary oocytes in females. The method presented here opens a possibility for large-scale production of germ-cell free Atlantic salmon offspring through the genetically sterile broodstock which can pass the sterility trait on the next generation.


Assuntos
Pesqueiros , Introgressão Genética/genética , Células Germinativas , Infertilidade/genética , Proteínas de Ligação a RNA/genética , Salmo salar/embriologia , Salmo salar/genética , Animais , Sistemas CRISPR-Cas , Feminino , Masculino , Oócitos , Característica Quantitativa Herdável , Espermatogônias , Triploidia
11.
Sci Rep ; 9(1): 16888, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729437

RESUMO

The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50-100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/biossíntese , Edição de Genes/métodos , Lipogênese/genética , Salmo salar , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Ômega-3/biossíntese , Engenharia Metabólica/métodos , Engenharia Metabólica/veterinária , Mutagênese/fisiologia , Mutação , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo
12.
BMC Genomics ; 20(1): 475, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185904

RESUMO

BACKGROUND: When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. RESULTS: Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfß, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. CONCLUSIONS: Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Salmo salar/crescimento & desenvolvimento , Salmo salar/genética , Maturidade Sexual/genética , Testículo/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Salmo salar/metabolismo , Testículo/fisiologia
13.
BMC Genet ; 20(1): 44, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060499

RESUMO

BACKGROUND: In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. RESULTS: Here, we reared domesticated salmon (mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. CONCLUSIONS: Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate.


Assuntos
Genótipo , Salmo salar/genética , Maturidade Sexual/genética , Fatores de Transcrição/genética , Animais , Feminino , Masculino , Fenótipo
14.
Sci Rep ; 9(1): 7533, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101849

RESUMO

Atlantic salmon can synthesize polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (20:5n-3), arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3) via activities of very long chain fatty acyl elongases (Elovls) and fatty acyl desaturases (Fads), albeit to a limited degree. Understanding molecular mechanisms of PUFA biosynthesis and regulation is a pre-requisite for sustainable use of vegetable oils in aquafeeds as current sources of fish oils are unable to meet increasing demands for omega-3 PUFAs. By generating CRISPR-mediated elovl2 partial knockout (KO), we have shown that elovl2 is crucial for multi-tissue synthesis of 22:6n-3 in vivo and that endogenously synthesized PUFAs are important for transcriptional regulation of lipogenic genes in Atlantic salmon. The elovl2-KOs showed reduced levels of 22:6n-3 and accumulation of 20:5n-3 and docosapentaenoic acid (22:5n-3) in the liver, brain and white muscle, suggesting inhibition of elongation. Additionally, elovl2-KO salmon showed accumulation of 20:4n-6 in brain and white muscle. The impaired synthesis of 22:6n-3 induced hepatic expression of sterol regulatory element binding protein-1 (srebp-1), fatty acid synthase-b, Δ6fad-a, Δ5fad and elovl5. Our study demonstrates key roles of elovl2 at two penultimate steps of PUFA synthesis in vivo and suggests Srebp-1 as a main regulator of endogenous PUFA synthesis in Atlantic salmon.


Assuntos
Elongases de Ácidos Graxos/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Salmo salar/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Ácido Araquidônico/biossíntese , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Técnicas de Inativação de Genes , Metabolismo dos Lipídeos/genética , Músculos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
15.
BMC Genomics ; 19(1): 240, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636006

RESUMO

BACKGROUND: Increased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates, including teleosts. Sequencing of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss of the major histocompatibility complex (MHC) II genes 100 million years ago. An improved version of the Atlantic cod genome assembly shows an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous assemblies are therefore needed to further investigate the unusual immune system of the Gadiformes, and whether the high density of tandem repeats found in Atlantic cod is a shared trait in this group. RESULTS: Here, we have sequenced and assembled the genome of haddock (Melanogrammus aeglefinus) - a relative of Atlantic cod - using a combination of PacBio and Illumina reads. Comparative analyses reveal that the haddock genome contains an even higher density of tandem repeats outside and within protein coding sequences than Atlantic cod. Further, both species show an elevated number of tandem repeats in genes mainly involved in signal transduction compared to other teleosts. A characterization of the immune gene repertoire demonstrates a substantial expansion of MCHI in Atlantic cod compared to haddock. In contrast, the Toll-like receptors show a similar pattern of gene losses and expansions. For the NOD-like receptors (NLRs), another gene family associated with the innate immune system, we find a large expansion common to all teleosts, with possible lineage-specific expansions in zebrafish, stickleback and the codfishes. CONCLUSIONS: The generation of a highly contiguous genome assembly of haddock revealed that the high density of short tandem repeats as well as expanded immune gene families is not unique to Atlantic cod - but possibly a feature common to all, or most, codfishes. A shared expansion of NLR genes in teleosts suggests that the NLRs have a more substantial role in the innate immunity of teleosts than other vertebrates. Moreover, we find that high copy number genes combined with variable genome assembly qualities may impede complete characterization of these genes, i.e. the number of NLRs in different teleost species might be underestimates.


Assuntos
Proteínas de Peixes/genética , Gadiformes/genética , Genoma , Imunidade Inata/genética , Repetições de Microssatélites , Animais , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas NLR/genética , Densidade Demográfica , Receptores Toll-Like/genética
16.
Sci Rep ; 8(1): 1912, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382956

RESUMO

Vgll3 is linked to age at maturity in Atlantic salmon (Salmo salar). However, the molecular mechanisms involving Vgll3 in controlling timing of puberty as well as relevant tissue and cell types are currently unknown. Vgll3 and the associated Hippo pathway has been linked to reduced proliferation activity in different tissues. Analysis of gene expression reveals for the first time that vgll3 and several members of the Hippo pathway were down-regulated in salmon testis during onset of puberty and remained repressed in maturing testis. In the gonads, we found expression in Sertoli and granulosa cells in males and females, respectively. We hypothesize that vgll3 negatively regulates Sertoli cell proliferation in testis and therefore acts as an inhibitor of pubertal testis growth. Gonadal expression of vgll3 is located to somatic cells that are in direct contact with germ cells in both sexes, however our results indicate sex-biased regulation of vgll3 during puberty.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Salmo salar/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/fisiologia , Feminino , Expressão Gênica/fisiologia , Células Germinativas/metabolismo , Células da Granulosa/metabolismo , Masculino , Diferenciação Sexual/fisiologia , Maturidade Sexual/fisiologia
17.
Sci Rep ; 7(1): 12584, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974703

RESUMO

In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11ß, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17ß and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.


Assuntos
Proteínas de Peixes/genética , Hormônios Esteroides Gonadais/genética , Puberdade/genética , Salmo salar/genética , Processos de Determinação Sexual , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Masculino , Oócitos/crescimento & desenvolvimento , Puberdade/fisiologia , Salmo salar/crescimento & desenvolvimento , Maturidade Sexual/genética
18.
BMC Genomics ; 18(1): 95, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100185

RESUMO

BACKGROUND: The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. RESULTS: By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. CONCLUSIONS: The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


Assuntos
Gadus morhua/genética , Genômica/métodos , Sequências de Repetição em Tandem/genética , Animais , Heterozigoto , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Análise de Sequência de DNA
19.
Elife ; 62017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117666

RESUMO

Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Gadiformes/embriologia , Morfogênese/efeitos dos fármacos , Petróleo/toxicidade , Poluentes da Água/toxicidade , Animais
20.
Sci Rep ; 6: 31058, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506155

RESUMO

Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 µg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.


Assuntos
Cálcio/metabolismo , Exposição Ambiental/efeitos adversos , Peixes/fisiologia , Coração/fisiologia , Mioblastos/fisiologia , Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Crânio/fisiologia , Animais , Células Cultivadas , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Espaço Intracelular , Canais Iônicos/metabolismo , Estágios do Ciclo de Vida , Morfogênese , Poluição por Petróleo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA