Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
New Phytol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584326

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

2.
Plant Biotechnol J ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520342

RESUMO

High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.

3.
Plant Genome ; 17(1): e20288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36718796

RESUMO

Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.


Assuntos
Cromossomos , Triticum , Triticum/genética , Fenótipo , Grão Comestível/genética , Variação Genética
4.
PLoS Genet ; 19(9): e1010947, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721961

RESUMO

Circadian rhythms coordinate the responses of organisms with their daily fluctuating environments, by establishing a temporal program of gene expression. This schedules aspects of metabolism, physiology, development and behaviour according to the time of day. Circadian regulation in plants is extremely pervasive, and is important because it underpins both productivity and seasonal reproduction. Circadian regulation extends to the control of environmental responses through a regulatory process known as circadian gating. Circadian gating is the process whereby the circadian clock regulates the response to an environmental cue, such that the magnitude of response to an identical cue varies according to the time of day of the cue. Here, we show that there is genome-wide circadian gating of responses to cold temperatures in plants. By using bread wheat as an experimental model, we establish that circadian gating is crucial to the programs of gene expression that underlie the environmental responses of a crop of major socioeconomic importance. Furthermore, we identify that circadian gating of cold temperature responses are distributed unevenly across the three wheat subgenomes, which might reflect the geographical origins of the ancestors of modern wheat.

6.
Plant Biotechnol J ; 21(2): 405-418, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373224

RESUMO

Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.


Assuntos
Sistemas CRISPR-Cas , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Cromossomos , Meiose/genética
7.
Biochem Soc Trans ; 50(4): 1179-1186, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35901450

RESUMO

Wheat is a major cereal crop that possesses a large allopolyploid genome formed through hybridisation of tetraploid and diploid progenitors. During meiosis, crossovers (COs) are constrained in number to 1-3 per chromosome pair that are predominantly located towards the chromosome ends. This reduces the probability of advantageous traits recombining onto the same chromosome, thus limiting breeding. Therefore, understanding the underlying factors controlling meiotic recombination may provide strategies to unlock the genetic potential in wheat. In this mini-review, we will discuss the factors associated with restricted CO formation in wheat, such as timing of meiotic events, chromatin organisation, pre-meiotic DNA replication and dosage of CO genes, as a means to modulate recombination.


Assuntos
Troca Genética , Triticum , Cromossomos , Recombinação Homóloga , Meiose , Triticum/genética
8.
Nat Commun ; 13(1): 3644, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752733

RESUMO

FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm.


Assuntos
Troca Genética , Triticum , Meiose/genética , Melhoramento Vegetal , Triticum/genética
9.
Front Plant Sci ; 13: 841855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498663

RESUMO

The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.

10.
Pastoral Psychol ; 71(3): 359-376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34690369

RESUMO

According to Catholic theology, God offers a gift of love, known as divine grace, to all of humanity. This gift of divine grace is the gift of redemption and forgiveness of sins from God that is offered to everyone who decides to acknowledge and accept it. Grace is central to the lived experience of many Christians. This qualitative study examined how Catholics perceive and experience divine grace using interviews that assessed perceptions of divine grace in 29 practicing adult Catholics. A grounded theory analysis resulted in themes indicating that these Catholics view God's divine grace as a tangible gift that is undeserved though continuously offered. The participants' experience of God's grace is not just an abstract theological concept but an embodied aspect of religious life with which believers can interact in many powerful ways. Three characteristics of God's divine grace (i.e., salvific grace, cooperation through free will, primacy of conscience and the afterlife) and three mechanisms to experiencing God's grace (i.e., sacraments, prayer and meditation, saints) are presented.

11.
Genome Res ; 31(9): 1614-1628, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426514

RESUMO

The hexaploid bread wheat genome comprises over 16 gigabases of sequence across 21 chromosomes. Meiotic crossovers are highly polarized along the chromosomes, with elevation in the gene-dense distal regions and suppression in the Gypsy retrotransposon-dense centromere-proximal regions. We profiled the genomic landscapes of the meiotic recombinase DMC1 and the chromosome axis protein ASY1 in wheat and investigated their relationships with crossovers, chromatin state, and genetic diversity. DMC1 and ASY1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed strong co-enrichment in the distal, crossover-active regions of the wheat chromosomes. Distal ChIP-seq enrichment is consistent with spatiotemporally biased cytological immunolocalization of DMC1 and ASY1 close to the telomeres during meiotic prophase I. DMC1 and ASY1 ChIP-seq peaks show significant overlap with genes and transposable elements in the Mariner and Mutator superfamilies. However, DMC1 and ASY1 ChIP-seq peaks were detected along the length of each chromosome, including in low-crossover regions. At the fine scale, crossover elevation at DMC1 and ASY1 peaks and genes correlates with enrichment of the Polycomb histone modification H3K27me3. This indicates a role for facultative heterochromatin, coincident with high DMC1 and ASY1, in promoting crossovers in wheat and is reflected in distalized H3K27me3 enrichment observed via ChIP-seq and immunocytology. Genes with elevated crossover rates and high DMC1 and ASY1 ChIP-seq signals are overrepresented for defense-response and immunity annotations, have higher sequence polymorphism, and exhibit signatures of selection. Our findings are consistent with meiotic recombination promoting genetic diversity, shaping host-pathogen co-evolution, and accelerating adaptation by increasing the efficiency of selection.


Assuntos
Cromossomos de Plantas , Meiose , Triticum , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/genética , Heterocromatina , Histonas/genética , Meiose/genética , Triticum/genética
12.
Sci Rep ; 11(1): 7601, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828173

RESUMO

Soil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non-renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use efficient crop varieties. We phenotyped 82 diverse wheat (Triticum aestivum L.) accessions in soil and hydroponics at low and sufficient P. To identify the genic regions for P efficiency traits, the accessions were genotyped using the 35 K-SNP array and genome-wide association study (GWAS) was performed. The high-quality SNPs across the genomes were evenly distributed with polymorphic information content values varying between 0.090 and 0.375. Structure analysis revealed three subpopulations (C1, C2, C3) and the phenotypic responses of these subpopulations were assessed for P efficiency traits. The C2 subpopulation showed the highest genetic variance and heritability values for numerous agronomically important traits as well as strong correlation under both P levels in soil and hydroponics. GWAS revealed 78 marker-trait associations (MTAs) but only 35 MTAs passed Bonferroni Correction. A total of 297 candidate genes were identified for these MTAs and their annotation suggested their involvement in several biological process. Out of 35, nine (9) MTAs were controlling polygenic trait (two controlling four traits, one controlling three traits and six controlling two traits). These multi-trait MTAs (each controlling two or more than two correlated traits) could be utilized for improving bread wheat to tolerate low P stress through marker-assisted selection (MAS).


Assuntos
Fósforo/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/genética , Agricultura/métodos , Alelos , Frequência do Gene/genética , Genes de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
13.
Front Plant Sci ; 12: 631323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679846

RESUMO

Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.

14.
Plant Biotechnol J ; 19(8): 1602-1613, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33638281

RESUMO

Free asparagine is the precursor for acrylamide, which forms during the baking, toasting and high-temperature processing of foods made from wheat. In this study, CRISPR/Cas9 was used to knock out the asparagine synthetase gene, TaASN2, of wheat (Triticum aestivum) cv. Cadenza. A 4-gRNA polycistronic gene was introduced into wheat embryos by particle bombardment and plants were regenerated. T1 plants derived from 11 of 14 T0 plants were shown to carry edits. Most edits were deletions (up to 173 base pairs), but there were also some single base pair insertions and substitutions. Editing continued beyond the T1 generation. Free asparagine concentrations in the grain of plants carrying edits in all six TaASN2 alleles (both alleles in each genome) were substantially reduced compared with wildtype, with one plant showing a more than 90 % reduction in the T2 seeds. A plant containing edits only in the A genome alleles showed a smaller reduction in free asparagine concentration in the grain, but the concentration was still lower than in wildtype. Free asparagine concentration in the edited plants was also reduced as a proportion of the free amino acid pool. Free asparagine concentration in the T3 seeds remained substantially lower in the edited lines than wildtype, although it was higher than in the T2 seeds, possibly due to stress. In contrast, the concentrations of free glutamine, glutamate and aspartate were all higher in the edited lines than wildtype. Low asparagine seeds showed poor germination but this could be overcome by exogenous application of asparagine.


Assuntos
Aspartato-Amônia Ligase , Triticum , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Sistemas CRISPR-Cas/genética , Grão Comestível/metabolismo , Edição de Genes , Triticum/genética , Triticum/metabolismo
15.
Nat Plants ; 7(2): 172-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526912

RESUMO

Bread wheat (Triticum aestivum) is one of the world's most important crops; however, a low level of genetic diversity within commercial breeding accessions can significantly limit breeding potential. In contrast, wheat relatives exhibit considerable genetic variation and so potentially provide a valuable source of novel alleles for use in breeding new cultivars. Historically, gene flow between wheat and its relatives may have contributed novel alleles to the bread wheat pangenome. To assess the contribution made by wheat relatives to genetic diversity in bread wheat, we used markers based on single nucleotide polymorphisms to compare bread wheat accessions, created in the past 150 years, with 45 related species. We show that many bread wheat accessions share near-identical haplotype blocks with close relatives of wheat's diploid and tetraploid progenitors, while some show evidence of introgressions from more distant species and structural variation between accessions. Hence, introgressions and chromosomal rearrangements appear to have made a major contribution to genetic diversity in cultivar collections. As gene flow from relatives to bread wheat is an ongoing process, we assess the impact that introgressions might have on future breeding strategies.


Assuntos
Pão , Instabilidade Cromossômica , Fluxo Gênico , Genoma de Planta , Melhoramento Vegetal/métodos , Triticum/genética , Variação Genética , Genótipo , Polimorfismo de Nucleotídeo Único
16.
New Phytol ; 228(6): 1767-1780, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910841

RESUMO

The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.


Assuntos
Melhoramento Vegetal , Triticum , Transporte de Elétrons , Fotossíntese , Folhas de Planta/genética , Triticum/genética
17.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32754757

RESUMO

CerealsDB (www.cerealsdb.uk.net) is an online repository of mainly hexaploid wheat (Triticum aestivum) single nucleotide polymorphisms (SNPs) and genotyping data. The CerealsDB website has been designed to enable wheat breeders and scientists to select the appropriate markers for research breeding tasks, such as marker-assisted selection. We report a large update of genotyping information for over 6000 wheat accessions and describe new webtools for exploring and visualizing the data. We also describe a new database of quantitative trait loci that links phenotypic traits to CerealsDB SNP markers and allelic scores for each of those markers. CerealsDB is an open-access website that hosts information on wheat SNPs considered useful for both plant breeders and research scientists. The latest CerealsDB database is available at https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php.


Assuntos
Bases de Dados Genéticas , Grão Comestível/genética , Genoma de Planta/genética , Software , Triticum/genética , Cruzamento , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
18.
BMC Bioinformatics ; 21(1): 311, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677889

RESUMO

BACKGROUND: Polyploid organisms such as wheat complicate even the simplest of procedures in molecular biology. Whilst knowledge of genomic sequences in crops is increasing rapidly, the scientific community is still a long way from producing a full pan-genome for every species. Polymerase chain reaction and Sanger sequencing therefore remain widely used as methods for characterizing gene sequences in many varieties of crops. High sequence similarity between genomes in polyploids means that if primers are not homeologue-specific via the incorporation of a SNP at the 3' tail, sequences other than the target sequence will also be amplified. Current consensus for gene cloning in wheat is to manually perform many steps in a long bioinformatics pipeline. RESULTS: Here we present AutoCloner ( www.autocloner.com ), a fully automated pipeline for crop gene cloning that includes a free-to-use web interface for users. AutoCloner takes a sequence of interest from the user and performs a basic local alignment search tool (BLAST) search against the genome assembly for their particular polyploid crop. Homologous sequences are then compiled with the input sequence into a multiple sequence alignment which is mined for single-nucleotide polymorphisms (SNPs). Various combinations of potential primers that cover the entire gene of interest are then created and evaluated by Primer3; the set of primers with the highest score, as well as all possible primers at every SNP location, are then returned to the user for polymerase chain reaction (PCR). We have successfully used AutoCloner to clone various genes of interest in the Apogee wheat variety, which has no current genome sequence. In addition, we have successfully run the pipeline on ~ 80,000 high-confidence gene models from a wheat genome assembly. CONCLUSION: AutoCloner is the first tool to fully-automate primer design for gene cloning in polyploids, where previously the consensus within the wheat community was to perform this process manually. The web interface for AutoCloner provides a simple and effective polyploid primer-design method for gene cloning, with no need for researchers to download software or input any other details other than their sequence of interest.


Assuntos
Clonagem Molecular , Biologia Computacional/métodos , Primers do DNA/metabolismo , Poliploidia , Homologia de Sequência , Software , Triticum/genética , Substituição de Aminoácidos/genética , Sequência de Bases , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único/genética
19.
Plant Physiol ; 183(4): 1545-1558, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527734

RESUMO

Crossovers (COs) ensure accurate chromosome segregation during meiosis while creating novel allelic combinations. Here, we show that allotetraploid (AABB) durum wheat (Triticum turgidum ssp. durum) utilizes two pathways of meiotic recombination. The class I pathway requires MSH4 and MSH5 (MutSγ) to maintain the obligate CO/chiasma and accounts for ∼85% of meiotic COs, whereas the residual ∼15% are consistent with the class II CO pathway. Class I and class II chiasmata are skewed toward the chromosome ends, but class II chiasmata are significantly more distal than class I chiasmata. Chiasma distribution does not reflect the abundance of double-strand breaks, detected by proxy as RAD51 foci at leptotene, but only ∼2.3% of these sites mature into chiasmata. MutSγ maintains the obligate chiasma despite a 5.4-kb deletion in MSH5B rendering it nonfunctional, which occurred early in the evolution of tetraploid wheat and was then domesticated into hexaploid (AABBDD) common wheat (Triticum aestivum), as well as an 8-kb deletion in MSH4D in hexaploid wheat, predicted to create a nonfunctional pseudogene. Stepwise loss of MSH5B and MSH4D following hybridization and whole-genome duplication may have occurred due to gene redundancy (as functional copies of MSH5A, MSH4A, and MSH4B are still present in the tetraploid and MSH5A, MSH5D, MSH4A, and MSH4B are present in the hexaploid) or as an adaptation to modulate recombination in allopolyploid wheat.


Assuntos
Triticum/genética , Segregação de Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Meiose/fisiologia , Tetraploidia
20.
Front Plant Sci ; 11: 230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218791

RESUMO

Meiotic recombination plays a crucial role in the generation of new varieties. The effectiveness of recombination is limited by the distribution of crossover events, which in wheat and many other crops is skewed toward the distal regions of the chromosomes. Whole-genome sequencing of wheat has revealed that there are numerous important genes in the pericentromeric regions, which are inaccessible to manipulation due to the lack of crossover events. Studies in barley have shown that the distribution of recombination events can be shifted toward the centromeres by increasing temperature during meiosis. Here we present an analysis of the effects of temperature on the distribution and frequency of recombination events in wheat. Our data show that although increased temperature during meiosis does cause an inward shift in recombination distribution for some chromosomes, its overall utility is limited, with many genes remaining highly linked.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA