Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854146

RESUMO

The molecular mechanisms that drive essential developmental patterning events in the mammalian embryo remain poorly understood. To generate a conceptual framework for gene regulatory processes during germ layer specification, we analyzed transcription factor (TF) expression kinetics around gastrulation and during in vitro differentiation. This approach identified Otx2 as a candidate regulator of definitive endoderm (DE), the precursor of all gut-derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation models revealed that loss of OTX2 before or after DE specification alters the expression of core components and targets of specific cellular signaling pathways, perturbs adhesion and migration programs as well as de-represses regulators of other lineages, resulting in impaired foregut specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is required to establish chromatin accessibility at candidate enhancers, which regulate genes critical to establishing an anterior cell identity in the developing gut. Our results provide a working model for the progressive establishment of spatiotemporal cell identity by developmental TFs across germ layers and species, which may facilitate the generation of gut cell types for regenerative medicine applications.

2.
Nat Struct Mol Biol ; 31(1): 125-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38053013

RESUMO

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Sequências Reguladoras de Ácido Nucleico , Animais , Regiões Promotoras Genéticas/genética , Cromatina/genética , Linhagem da Célula/genética , Expressão Gênica , Elementos Facilitadores Genéticos/genética , Mamíferos/genética
3.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37577543

RESUMO

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.

4.
Stem Cell Reports ; 15(6): 1233-1245, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32976761

RESUMO

Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.


Assuntos
Reprogramação Celular , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/enzimologia , Animais , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Metilação , Camundongos
5.
Cell Rep ; 22(4): 876-884, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29420174

RESUMO

The ability of induced pluripotent stem cells (iPSCs) to differentiate into all adult cell types makes them attractive for research and regenerative medicine; however, it remains unknown when and how this capacity is established. We characterized the acquisition of developmental pluripotency in a suitable reprogramming system to show that iPSCs prior to passaging become capable of generating all tissues upon injection into preimplantation embryos. The developmental potential of nascent iPSCs is comparable to or even surpasses that of established pluripotent cells. Further functional assays and genome-wide molecular analyses suggest that cells acquiring developmental pluripotency exhibit a unique combination of properties that distinguish them from canonical naive and primed pluripotency states. These include reduced clonal self-renewal potential and the elevated expression of differentiation-associated transcriptional regulators. Our observations close a gap in the understanding of induced pluripotency and provide an improved roadmap of cellular reprogramming with ramifications for the use of iPSCs.


Assuntos
Regulação da Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
6.
Stem Cell Reports ; 8(6): 1488-1496, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28528697

RESUMO

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin regulatory complex that functions as a transcriptional co-repressor in metazoans. The NuRD subunit MBD3 is essential for targeting and assembly of a functional NuRD complex as well as embryonic stem cell (ESC) pluripotency. Three MBD3 isoforms (MBD3A, MBD3B, and MBD3C) are expressed in mouse. Here, we find that the MBD3C isoform contains a unique 50-amino-acid N-terminal region that is necessary for MBD3C to specifically interact with the histone H3 binding protein WDR5. Domain analyses of WDR5 reveal that the H3 binding pocket is required for interaction with MBD3C. We find that while Mbd3c knockout ESCs differentiate normally, MBD3C is redundant with the MBD3A and MBD3B isoforms in regulation of gene expression, with the unique MBD3C N terminus required for this redundancy. Together, our data characterize a unique NuRD complex variant that functions specifically in ESCs.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ligação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/análise , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Elife ; 52016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849519

RESUMO

Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Genoma , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/genética , 5-Metilcitosina/metabolismo , Animais , Cromatina/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/deficiência , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(35): 14278-83, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23918381

RESUMO

During meiosis, two consecutive rounds of chromosome segregation yield four haploid gametes from one diploid cell. The Polo kinase Cdc5 is required for meiotic progression, but how Cdc5 coordinates multiple cell-cycle events during meiosis I is not understood. Here we show that CDC5-dependent phosphorylation of Rec8, a subunit of the cohesin complex that links sister chromatids, is required for efficient cohesin removal from chromosome arms, which is a prerequisite for meiosis I chromosome segregation. CDC5 also establishes conditions for centromeric cohesin removal during meiosis II by promoting the degradation of Spo13, a protein that protects centromeric cohesin during meiosis I. Despite CDC5's central role in meiosis I, the protein kinase is dispensable during meiosis II and does not even phosphorylate its meiosis I targets during the second meiotic division. We conclude that Cdc5 has evolved into a master regulator of the unique meiosis I chromosome segregation pattern.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
9.
Cell ; 147(7): 1498-510, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196727

RESUMO

Numerous chromatin regulators are required for embryonic stem (ES) cell self-renewal and pluripotency, but few have been studied in detail. Here, we examine the roles of several chromatin regulators whose loss affects the pluripotent state of ES cells. We find that Mbd3 and Brg1 antagonistically regulate a common set of genes by regulating promoter nucleosome occupancy. Furthermore, both Mbd3 and Brg1 play key roles in the biology of 5-hydroxymethylcytosine (5hmC): Mbd3 colocalizes with Tet1 and 5hmC in vivo, Mbd3 knockdown preferentially affects expression of 5hmC-marked genes, Mbd3 localization is Tet1-dependent, and Mbd3 preferentially binds to 5hmC relative to 5-methylcytosine in vitro. Finally, both Mbd3 and Brg1 are themselves required for normal levels of 5hmC in vivo. Together, our results identify an effector for 5hmC, and reveal that control of gene expression by antagonistic chromatin regulators is a surprisingly common regulatory strategy in ES cells.


Assuntos
Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Montagem e Desmontagem da Cromatina , Citosina/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/metabolismo
10.
Cell ; 142(4): 556-67, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20723757

RESUMO

The monopolin complex regulates different types of kinetochore-microtubule attachments in fungi, ensuring sister chromatid co-orientation in Saccharomyces cerevisiae meiosis I and inhibiting merotelic attachment in Schizosaccharomyces pombe mitosis. In addition, the monopolin complex maintains the integrity and silencing of ribosomal DNA (rDNA) repeats in the nucleolus. We show here that the S. cerevisiae Csm1/Lrs4 monopolin subcomplex has a distinctive V-shaped structure, with two pairs of protein-protein interaction domains positioned approximately 10 nm apart. Csm1 presents a conserved hydrophobic surface patch that binds two kinetochore proteins: Dsn1, a subunit of the outer-kinetochore MIND/Mis12 complex, and Mif2/CENP-C. Csm1 point-mutations that disrupt kinetochore-subunit binding also disrupt sister chromatid co-orientation in S. cerevisiae meiosis I. We further show that the same Csm1 point-mutations affect rDNA silencing, probably by disrupting binding to the rDNA-associated protein Tof2. We propose that Csm1/Lrs4 functions as a molecular clamp, crosslinking kinetochore components to enforce sister chromatid co-orientation in S. cerevisiae meiosis I and to suppress merotelic attachment in S. pombe mitosis, and crosslinking rDNA repeats to aid rDNA silencing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cinetocoros/metabolismo , Meiose , Mitose , Modelos Moleculares , Mutação Puntual , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética
11.
Mol Biol Cell ; 20(3): 1030-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073884

RESUMO

Sister chromatid cohesion, mediated by cohesin complexes, is laid down during DNA replication and is essential for the accurate segregation of chromosomes. Previous studies indicated that, in addition to their cohesion function, cohesins are essential for completion of recombination, pairing, meiotic chromosome axis formation, and assembly of the synaptonemal complex (SC). Using mutants in the cohesin subunit Rec8, in which phosphorylated residues were mutated to alanines, we show that cohesin phosphorylation is not only important for cohesin removal, but that cohesin's meiotic prophase functions are distinct from each other. We find pairing and SC formation to be dependent on Rec8, but independent of the presence of a sister chromatid and hence sister chromatid cohesion. We identified mutations in REC8 that differentially affect Rec8's cohesion, pairing, recombination, chromosome axis and SC assembly function. These findings define Rec8 as a key determinant of meiotic chromosome morphogenesis and a central player in multiple meiotic events.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico , Cromossomos Fúngicos/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anáfase , Bioensaio , Replicação do DNA , Proteínas Mutantes/metabolismo , Proteínas Nucleares , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Troca de Cromátide Irmã , Complexo Sinaptonêmico/metabolismo , Coesinas
12.
Mol Biol Cell ; 17(7): 3136-46, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672381

RESUMO

In budding yeast, a signaling network known as the mitotic exit network (MEN) triggers exit from mitosis. We find that hypertonic stress allows MEN mutants to exit from mitosis in a manner dependent on the high osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase cascade. The HOG pathway drives exit from mitosis in MEN mutants by promoting the activation of the MEN effector, the protein phosphatase Cdc14. Activation of Cdc14 depends on the Cdc14 early anaphase release network, a group of proteins that functions in parallel to the MEN to promote Cdc14 function. Notably, exit from mitosis is promoted by the signaling branch defined by the Sho1 osmosensing system, but not by the Sln1 osmosensor of the HOG pathway. Our results suggest that the stress MAP kinase pathway mobilizes programs to promote completion of the cell cycle and entry into G1 under unfavorable conditions.


Assuntos
Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Mitose , Saccharomycetales/fisiologia , Ciclo Celular/efeitos dos fármacos , Ativação Enzimática , Fase G1/efeitos dos fármacos , Glicerol/farmacologia , Soluções Hipertônicas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitose/genética , Mutação , Pressão Osmótica , Fosfoproteínas Fosfatases/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA