Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Insects ; 14(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132601

RESUMO

The best-known effect of the intracellular bacterium Wolbachia is its mostly negative influence on the reproduction of the host. However, there is evidence of a positive influence of Wolbachia on the host's resistance to stress, pathogens, and viruses. Here, we analyzed the effects of two Wolbachia strains belonging to wMel and wMelCS genotypes on D. melanogaster traits, such as fertility, survival under acute heat stress, and developmental rate. We found that D. melanogaster lines under study differ significantly in the above-mentioned characteristics, both when the natural infection was preserved, and when it was eliminated. One of Wolbachia strains, wMel, did not affect any of the studied traits. Another strain, wMelPlus, had a significant effect on the development time. Moreover, this effect is observed not only in the line in which it was discovered but also in the one it was transferred to. When transferred to a new line, wMelPlus also caused changes in survival under heat stress. Thus, it could be concluded that Wolbachia-Drosophila interaction depends on the genotypes of both the host and the symbiont, but some Wolbachia effects could depend not on the genotypes, but on the fact of recent transfer of the symbiont.

2.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37978847

RESUMO

Bacillus strains are ubiquitous in the environment and are widely used in the microbiological industry as valuable enzyme sources, as well as in agriculture to stimulate plant growth. The Bacillus genus comprises several closely related groups of species. The rapid classification of these remains challenging using existing methods. Techniques based on MALDI-TOF MS data analysis hold significant promise for fast and precise microbial strains classification at both the genus and species levels. In previous work, we proposed a geometric approach to Bacillus strain classification based on mass spectra analysis via the centroid method (CM). One limitation of such methods is the noise in MS spectra. In this study, we used a denoising autoencoder (DAE) to improve bacteria classification accuracy under noisy MS spectra conditions. We employed a denoising autoencoder approach to convert noisy MS spectra into latent variables representing molecular patterns in the original MS data, and the Random Forest method to classify bacterial strains by latent variables. Comparison of the DAE-RF with the CM method using the artificially noisy test samples showed that DAE-RF offers higher noise robustness. Hence, the DAE-RF method could be utilized for noise-robust, fast, and neat classification of Bacillus species according to MALDI-TOF MS data.


Assuntos
Bacillus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias
3.
Metabolites ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367925

RESUMO

Determination of chemotypes and of their role in the polymorphism of populations is an important field in the research on secondary metabolites of plants. In the present study, by gas chromatography coupled with mass spectrometry, the composition of bark extracts from rowan S. aucuparia subsp. sibirica was determined for 16 trees growing within Akademgorodok of Novosibirsk, with bark samples collected both in winter and summer. Among 101 fully or partially identified metabolites, there are alkanes, alkenes, linear alcohols, fatty acids and their derivatives, phenols and their derivatives, prunasin and its parent and derivative compounds, polyprenes and their derivatives, cyclic diterpenes, and phytosterols. These compounds were grouped according to their biosynthesis pathways. Cluster analysis revealed two groups among the bark samples collected in winter and three groups among bark samples collected in summer. The key determinants of this clustering are the biosynthesis of metabolites via the cyanogenic pathway (especially potentially toxic prunasin) and their formation via the phytosterol pathway (especially potentially pharmacologically useful lupeol). It follows from the results that the presence of chemotypes having sharply different profiles of metabolites in a population from a small geographic area invalidates the practice of general sampling to obtain averaged data when a population is described. From the standpoint of possible industrial use or plant selection based on metabolomic data, it is possible to select specific sets of samples containing a minimal amount of potentially toxic compounds and the largest amount of potentially useful substances.

4.
Biomolecules ; 13(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371489

RESUMO

Barley (Hordeum vulgare L.) is one of the most commonly cultivated cereals worldwide. Its local varieties can represent a valuable source of unique genetic variants useful for crop improvement. The aim of this study was to reveal loci contributing to spike productivity traits in Siberian spring barley and to develop diagnostic DNA markers for marker-assisted breeding programs. For this purpose we conducted a genome-wide association study using a panel of 94 barley varieties. In total, 64 SNPs significantly associated with productivity traits were revealed. Twenty-three SNP markers were validated by genotyping in an independent sample set using competitive allele-specific PCR (KASP). Finally, fourteen markers associated with spike productivity traits on chromosomes 2H, 4H and 5H can be suggested for use in breeding programs.


Assuntos
Hordeum , Mapeamento Cromossômico , Hordeum/genética , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
5.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769363

RESUMO

The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.


Assuntos
Hipocampo , Aprendizagem , Camundongos , Animais , Masculino , Hipocampo/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Neurogênese/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
6.
Biology (Basel) ; 11(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453804

RESUMO

In the south of western Siberia (Russia), there are many unique and unexplored soda, saline, and freshwater lakes. In this study, the results are presented on microbial diversity, its metabolic potential, and their relation with a set of geochemical parameters for a hypersaline lake ecosystem in the Novosibirsk region (Oblast). The metagenomic approach used in this work allowed us to determine the composition and structure of a floating microbial community, the upper layer of silt, and the strata of bottom sediments in a natural saline lake via two bioinformatic approaches, whose results are in good agreement with each other. In the floating microbial community and in the upper layers of the bottom sediment, bacteria of the Proteobacteria (Gammaproteobacteria), Cyanobacteria, and Bacteroidetes phyla were found to predominate. The lower layers were dominated by Proteobacteria (mainly Deltaproteobacteria), Gemmatimonadetes, Firmicutes, and Archaea. Metabolic pathways were reconstructed to investigate the metabolic potential of the microbial communities and other hypothetical roles of the microbial communities in the biogeochemical cycle. Relations between different taxa of microorganisms were identified, as was their potential role in biogeochemical transformations of C, N, and S in a comparative structural analysis that included various ecological niches.

7.
Plants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009042

RESUMO

Seed storage is important to farmers, breeders and for germplasm preservation. During storage, seeds accumulate damage at the structural and metabolic level, which disrupt their function and reduce resistance to adverse external conditions. In this regard, issues related to seed aging prove to be relevant for maintaining the viability of genetic collections. We analyzed morphological characteristics of grains and their coat color for 44 recombinant inbred lines (RILs) of bread wheat grown in four different seasons, 2003, 2004, 2009 and 2014. Our investigations were performed in 2020. For 19 RILs from the same seasons germination was evaluated. Our results demonstrate that genotype significantly affects the variability of all seed traits, and the year of harvesting affects about 80% of them (including all the traits of shape and size). To identify the trend between changes in grain characteristics and harvesting year, we estimated correlation coefficients between them. No significant trend was detected for the grain shape/size traits, while 90% of the color traits demonstrated such a trend. The most significant negative correlations were found between the harvesting year and the traits of grain redness: the greater the storage time, the more intensive is red color component for the grains. At the same time, it was shown that grains of longer storage time (earlier harvesting year) have lighter coat. Analysis of linear correlations between germination of wheat seeds of different genotypes and harvesting years and their seed traits revealed a negative linear relationship between the red component of coat color and germination: the redder the grains, the lower their germination rate. The results obtained demonstrate manifestations of metabolic changes in the coat of grains associated with storage time and their relationship with a decrease of seed viability.

8.
PeerJ ; 8: e10286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240629

RESUMO

BACKGROUND: It is well-documented that (bio)chemical reaction capacity of raw potato starch depends on crystallinity, morphology and other chemical and physical properties of starch granules, and these properties are closely related to gene functions. Preparative yield, amylose/amylopectin content, and phosphorylation of potato tuber starch are starch-related traits studied at the genetic level. In this paper, we perform a genome-wide association study using a 22K SNP potato array to identify for the first time genomic regions associated with starch granule morphology and to increase number of known genome loci associated with potato starch yield. METHODS: A set of 90 potato (Solanum tuberosum L.) varieties from the ICG "GenAgro" collection (Novosibirsk, Russia) was harvested, 90 samples of raw tuber starch were obtained, and DNA samples were isolated from the skin of the tubers. Morphology of potato tuber starch granules was evaluated by optical microscopy and subsequent computer image analysis. A set of 15,214 scorable SNPs was used for the genome-wide analysis. In total, 53 SNPs were found to be significantly associated with potato starch morphology traits (aspect ratio, roundness, circularity, and the first bicomponent) and starch yield-related traits. RESULTS: A total of 53 novel SNPs was identified on potato chromosomes 1, 2, 4, 5, 6, 7, 9, 11 and 12; these SNPs are associated with tuber starch preparative yield and granule morphology. Eight SNPs are situated close to each other on the chromosome 1 and 19 SNPs-on the chromosome 2, forming two DNA regions-potential QTLs, regulating aspect ratio and roundness of the starch granules. Thirty-seven of 53 SNPs are located in protein-coding regions. There are indications that granule shape may depend on starch phosphorylation processes. The GWD gene, which is known to regulate starch phosphorylation-dephosphorylation, participates in the regulation of a number of morphological traits, rather than one specific trait. Some significant SNPs are associated with membrane and plastid proteins, as well as DNA transcription and binding regulators. Other SNPs are related to low-molecular-weight metabolite synthesis, and may be associated with flavonoid biosynthesis and circadian rhythm-related metabolic processes. The preparative yield of tuber starch is a polygenic trait that is associated with a number of SNPs from various regions and chromosomes in the potato genome.

9.
BMC Microbiol ; 20(Suppl 2): 349, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33228530

RESUMO

BACKGROUND: The Uzon Caldera is one of the places on our planet with unique geological, ecological, and microbiological characteristics. Uzon oil is the youngest on Earth. Uzon oil has unique composition, with low proportion of heavy fractions and relatively high content of saturated hydrocarbons. Microbial communities of the «oil site¼ have a diverse composition and live at high temperatures (up to 97 °C), significant oscillations of Eh and pH, and high content of sulfur, sulfides, arsenic, antimony, and mercury in water and rocks. RESULTS: The study analyzed the composition, structure and unique genetics characteristics of the microbial communities of the oil site, analyzed the metabolic pathways in the communities. Metabolic pathways of hydrocarbon degradation by microorganisms have been found. The study found statistically significant relationships between geochemical parameters, taxonomic composition and the completeness of metabolic pathways. It was demonstrated that geochemical parameters determine the structure and metabolic potential of microbial communities. CONCLUSIONS: There were statistically significant relationships between geochemical parameters, taxonomic composition, and the completeness of metabolic pathways. It was demonstrated that geochemical parameters define the structure and metabolic potential of microbial communities. Metabolic pathways of hydrocarbon oxidation was found to prevail in the studied communities, which corroborates the hypothesis on abiogenic synthesis of Uzon hydrothermal petroleum.


Assuntos
Archaea/classificação , Bactérias/classificação , Fontes Termais/microbiologia , Hidrocarbonetos/metabolismo , Solo/química , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , DNA Ribossômico/genética , Fontes Termais/química , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Microbiota , Filogenia , RNA Ribossômico 16S/genética
10.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917038

RESUMO

Daily agonistic interactions of mice are an effective experimental approach to elucidate the molecular mechanisms underlying the excitation of the brain neurons and the formation of alternative social behavior patterns. An RNA-Seq analysis was used to compare the ventral tegmental area (VTA) transcriptome profiles for three groups of male C57BL/6J mice: winners, a group of chronically winning mice, losers, a group of chronically defeated mice, and controls. The data obtained show that both winners and defeated mice experience stress, which however, has a more drastic effect on defeated animals causing more significant changes in the levels of gene transcription. Four genes (Nrgn, Ercc2, Otx2, and Six3) changed their VTA expression profiles in opposite directions in winners and defeated mice. It was first shown that Nrgn (neurogranin) expression was highly correlated with the expression of the genes involved in dopamine synthesis and transport (Th, Ddc, Slc6a3, and Drd2) in the VTA of defeated mice but not in winners. The obtained network of 31 coregulated genes, encoding proteins associated with nervous system development (including 24 genes associated with the generation of neurons), may be potentially useful for studying their role in the VTA dopaminergic neurons maturation under the influence of social stress.


Assuntos
Comportamento Agonístico/fisiologia , Predomínio Social , Área Tegmentar Ventral/metabolismo , Animais , Estudos de Casos e Controles , Análise por Conglomerados , Dopamina/biossíntese , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL
11.
Front Microbiol ; 11: 609033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391232

RESUMO

Identification of microorganisms by MALDI-TOF mass spectrometry is a very efficient method with high throughput, speed, and accuracy. However, it is significantly limited by the absence of a universal database of reference mass spectra. This problem can be solved by creating an Internet platform for open databases of protein spectra of microorganisms. Choosing the optimal mathematical apparatus is the pivotal issue for this task. In our previous study we proposed the geometric approach for processing mass spectrometry data, which represented a mass spectrum as a vector in a multidimensional Euclidean space. This algorithm was implemented in a Jacob4 stand-alone package. We demonstrated its efficiency in delimiting two closely related species of the Bacillus pumilus group. In this study, the geometric approach was realized as R scripts which allowed us to design a Web-based application. We also studied the possibility of using full spectra analysis (FSA) without calculating mass peaks (PPA), which is the logical development of the method. We used 74 microbial strains from the collections of ICiG SB RAS, UNIQEM, IEGM, KMM, and VGM as the models. We demonstrated that the algorithms based on peak-picking and analysis of complete data have accuracy no less than that of Biotyper 3.1 software. We proposed a method for calculating cut-off thresholds based on averaged intraspecific distances. The resulting database, raw data, and the set of R scripts are available online at https://icg-test.mydisk.nsc.ru/s/qj6cfZg57g6qwzN.

12.
BMC Genet ; 20(Suppl 1): 29, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885119

RESUMO

BACKGROUND: The natural variation of starch phosphate content in potatoes has been previously reported. It is known that, in contrast to raw starch, commercially phosphorylated starch is more stable at high temperatures and shear rates and has higher water capacity. The genetic improvement of phosphate content in potato starch by selection or engineering would allow the production of phosphorylated starch in a natural, environmentally friendly way without chemicals. The aim of the current research is to identify genomic SNPs associated with starch phosphorylation by carrying out a genome-wide association study in potatoes. RESULTS: A total of 90 S. tuberosum L. varieties were used for phenotyping and genotyping. The phosphorus content of starch in 90 potato cultivars was measured and then statistically analysed. Principal component analysis (PCA) revealed that the third and eighth principal components appeared to be sensitive to variation in phosphorus content (p = 0.0005 and p = 0.002, respectively). PC3 showed the correlation of starch phosphorus content with allelic variations responsible for higher phosphorylation levels, found in four varieties. Similarly, PC8 indicated that hybrid 785/8-5 carried an allele associated with high phosphorus content, while the Impala and Red Scarlet varieties carried alleles for low phosphorus content. Genotyping was carried out using an Illumina 22 K SNP potato array. A total of 15,214 scorable SNPs (71.7% success rate) was revealed. GWAS mapping plots were obtained using TASSEL based on several statistical models, including general linear models (GLMs), with and without accounting for population structure, as well as MLM. A total of 17 significant SNPs was identified for phosphorus content in potato starch, 14 of which are assigned to 8 genomic regions on chromosomes 1, 4, 5, 7, 8, 10, and 11. Most of the SNPs identified belong to protein coding regions; however, their allelic variation was not associated with changes in protein structure or function. CONCLUSIONS: A total of 8 novel genomic regions possibly associated with starch phosphorylation on potato chromosomes 1, 4, 5, 7, 8, 10, and 11 was revealed. Further validation of the SNPs identified and the analysis of the surrounding genomic regions for candidate genes will allow better understanding of starch phosphorylation biochemistry. The most indicative SNPs may be useful for developing diagnostic markers to accelerate the breeding of potatoes with predetermined levels of starch phosphorylation.


Assuntos
Polimorfismo de Nucleotídeo Único , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/metabolismo , Cromossomos de Plantas , Estudo de Associação Genômica Ampla , Fosforilação , Tubérculos/química , Tubérculos/metabolismo , Federação Russa , Solanum tuberosum/química , Solanum tuberosum/enzimologia , Amido/isolamento & purificação
13.
Planta ; 249(3): 839-847, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30446814

RESUMO

MAIN CONCLUSION: Density and length of leaf pubescence are important factors of diversity in the response to water deficiency among wheat genotypes. Many studies evidence an important protective value of leaf hairiness in plants, especially under the conditions of drought, thermal loads and increased solar radiation. However, the physiological and adaptive roles of such traits in cereals, including cultivated plants, have not been sufficiently studied to date. The aim of this work was to study the association of morphological characteristics of leaves with parameters of gas exchange and chlorophyll fluorescence in wheat lines carrying a genetically different leaf hairiness. Isogenic and inter-varietal substitution wheat lines were used, carrying various combinations of dominant and recessive alleles of the known genes. A quantitative assessment of the pubescence was carried out in contrasting watering conditions to establish the physiological role of this trait in adaptation to drought. With the help of a portable system for studying the gas exchange and chlorophyll fluorescence, ten parameters of photosynthesis were studied, as well as morphological features of leaves and shoot biomass. It was found that gas exchange parameters are inversely proportional to the density and length of trichomes. In drought conditions, the trichome density increased and the length of trichomes decreased under the observed decrease in the level of gas exchange. A similar dependence was observed for the level of non-photochemical quenching of chlorophyll fluorescence. Under optimal conditions, the poorly haired cultivars exhibited a higher biomass than the densely haired. However, under water deficiency they significantly reduced the biomass and showed a low value of the tolerance index.


Assuntos
Fotossíntese , Folhas de Planta/anatomia & histologia , Triticum/anatomia & histologia , Clorofila/metabolismo , Desidratação , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Triticum/genética , Triticum/fisiologia
14.
BMC Genomics ; 20(Suppl 3): 297, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32039698

RESUMO

BACKGROUND: The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS: The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS: The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.


Assuntos
Pressão Sanguínea/genética , Tronco Encefálico/metabolismo , Perfilação da Expressão Gênica , Hipertensão/genética , Hipertensão/fisiopatologia , Animais , Anotação de Sequência Molecular , Ratos , Especificidade da Espécie , Estresse Fisiológico/genética , Fatores de Transcrição/genética
15.
BMC Genomics ; 20(Suppl 3): 292, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32039701

RESUMO

BACKGROUND: Net blotch caused by Pyrenophra teres f. teres is a major foliar disease of barley. Infection can result in significant yield losses of susceptible cultivars of up to 40%. Of the two forms of net blotch (P. teres f. teres and P. teres f. maculata), P. teres f. teres (net form of net blotch) is the dominant one in Russia. The goal of the current study was to identify genomic regions associated with seedling resistance to several pathotypes of the net form of net blotch in Siberian spring barley genotypes. For this, a genome-wide association study of a Siberian barley collection, genotyped with 50 K Illumina SNP-chip, was carried out. RESULTS: Seedling resistance of 94 spring barley cultivars and lines to four Pyrenophora teres f. teres isolates (S10.2, K5.1, P3.4.0, and A2.6.0) was investigated. According to the Tekauz rating scale, 25, 21, 14, and 14% of genotypes were highly resistant, and 19, 8, 9, and 16% of genotypes were moderate-resistant to the isolates S10.2, K5.1, P3.4.0, and A2.6.0, respectively. Eleven genotypes (Alag-Erdene, Alan-Bulag, L-259/528, Kedr, Krymchak 55, Omsky golozyorny 2, Omsky 13709, Narymchanin, Pallidum 394, Severny and Viner) were resistant to all studied isolates. Nine additional cultivars (Aley, Barkhatny, Belogorsky, Bezenchuksky 2, Emelya, G-19980, Merit 57, Mestny Primorsky, Slavaynsky) were resistant to 3 of the 4 isolates. The phenotyping and genotyping data were analysed using several statistical models: GLM + Q, GLM + PCA, GLM + PCA + Q, and the MLM + kinship matrix. In total, 40 SNPs in seven genomic regions associated with net blotch resistance were revealed: the region on chromosome 1H between 57.3 and 62.8 cM associated with resistance to 2 isolates (to P3.4.0 at the significant and K5.1 at the suggestive levels), the region on chromosome 6H between 52.6 and 55.4 cM associated with resistance to 3 isolates (to P3.4.0 at the significant and K5.1 and S10.2 at the suggestive levels), three isolate-specific significant regions (P3.4.0-specific regions on chromosome 2H between 71.0 and 74.1 cM and on chromosome 3H between 12.1 and 17.4 cM, and the A2.6.0-specific region on chromosome 3H between 50.9 and 54.8 cM), as well as two additional regions on chromosomes 2H (between 23.2 and 23.8 cM, resistant to S10.2) and 3 (between 135.6 and 137.5 cM resistant to K5.1) with suggestive SNPs, coinciding, however, with known net blotch resistance quantitative trait loci (QTLs) at the same regions. CONCLUSIONS: Seven genomic regions on chromosomes 1H, 2H, 3H, and 6H associated with the resistance to four Pyrenophora teres f. teres isolates were identified in a genome-wide association study of a Siberian spring barley panel. One novel isolate-specific locus on chromosome 3 between 12.1 and 17.4 cM was revealed. Other regions identified in the current study coincided with previously known loci conferring resistance to net blotch. The significant SNPs revealed in the current study can be converted to convenient PCR markers for accelerated breeding of resistant barley cultivars.


Assuntos
Ascomicetos/fisiologia , Hordeum/genética , Hordeum/microbiologia , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Hordeum/fisiologia , Fenótipo
16.
BMC Plant Biol ; 17(Suppl 2): 250, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297317

RESUMO

BACKGROUND: Spot blotch, caused by Cochliobolus sativus, is one of the most widespread and harmful diseases in barley. Identification of genetic loci associated with resistance to C. sativus is of importance for future marker-assisted selection. The goal of the current study was to identify loci conferring seedling resistance to two different pathotypes of C. sativus in the Siberian spring barley core collection. RESULTS: A total of 96 spring barley cultivars and lines were phenotyped at the seedling stage with two C. sativus isolates (Kr2 and Ch3). According to the Fetch-Steffenson rating scale 16%/17% of genotypes were resistant and 26%/30% were moderate-resistant to the Kr2/Ch3 isolates respectively. A total of 94 genotypes were analyzed with the barley 50 K Illumina Infinium iSELECT assay. From 44,040 SNPs, 40,703 were scorable, from which 39,140 were polymorphic. 27,319 SNPs passed filtering threshold and were used for association mapping. Data analysis by GLM revealed 48 and 41 SNPs for Kr2 and Ch3 isolates, respectively. After application of 5% Bonferroni multiple test correction, only 3 and 27 SNPs were identified, respectively. A total of three genomic regions were associated with the resistance. The region on chromosome 3H associated with Ch3-resistance was expanded between markers SCRI_RS_97417 and JHI-Hv50k-2016-158003 and included 11 SNPs, from which JHI-Hv50k-2016-157070, JHI-Hv50k-2016-156842 had the lowest p-values. These two SNPs were also significant in case of Kr2 isolate. The region on chromosome 2H included 16 loci (7 of them with the lowest p-values were tightly linked to BOPA2_12_11504). Three loci corresponding to this region had suggestive p-values in case of Kr2 tests, so the locus on chromosome 2H may also contribute to resistance to Kr2 isolate. The third region with significant p-value in case of Kr2 tests was identified on chromosome 1H at the locus JHI-Hv50k-2016-33568. CONCLUSIONS: Three genomic regions associated with the resistance to one or both isolates of C. sativus were identified via screening of the Siberian spring barley core collection. Comparison of their location with QTLs revealed previously either with biparental mapping populations studies or with GWAS of distinct germplasm and other isolates, demonstrated that resistance to isolates Kr2 and Ch3 is conferred by known spot blotch resistance loci. Information on SNPs related can be used further for development of DNA-markers convenient for diagnostics of resistance-associated alleles in barley breeding programs.


Assuntos
Ascomicetos/metabolismo , Resistência à Doença/genética , Hordeum/genética , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Hordeum/microbiologia , Locos de Características Quantitativas/genética
17.
BMC Microbiol ; 16 Suppl 1: 4, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26822997

RESUMO

BACKGROUND: Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes. RESULTS: According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L(-1). Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity. CONCLUSIONS: We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Lagos/microbiologia , Cloreto de Sódio/análise , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Lagos/química , Filogenia , Federação Russa , Cloreto de Sódio/metabolismo
18.
BMC Genet ; 17 Suppl 1: 13, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26822062

RESUMO

BACKGROUND: The hypothalamus has an important role in the onset and maintenance of hypertension and stress responses. Rats with inherited stress-induced arterial hypertension (ISIAH), reproducing the human stress-sensitive hypertensive state with predominant involvement of the neuroendocrine hypothalamic-pituitary-adrenal and sympathoadrenal axes, were used for analysis of the hypothalamus transcriptome. RESULTS: RNA-seq analysis revealed 139 genes differentially expressed in the hypothalami of hypertensive ISIAH and normotensive Wistar Albino Glaxo (WAG) rats. According to the annotation in databases, 18 of the differentially expressed genes (DEGs) were associated with arterial hypertension. The Gene Ontology (GO) functional annotation showed that these genes were related to different biological processes that may contribute to the hypertension development in the ISIAH rats. The most significantly affected processes were the following: regulation of hormone levels, immune system process, regulation of response to stimulus, blood circulation, response to stress, response to hormone stimulus, transport, metabolic processes, and endocrine system development. The most significantly affected metabolic pathways were those associated with the function of the immune system and cell adhesion molecules and the metabolism of retinol and arachidonic acid. Of the top 40 DEGs making the greatest contribution to the interstrain differences, there were 3 genes (Ephx2, Cst3 and Ltbp2) associated with hypertension that were considered to be suitable for further studies as potential targets for the stress-sensitive hypertension therapy. Seven DEGs were found to be common between hypothalamic transcriptomes of ISIAH rats and Schlager mice with established neurogenic hypertension. CONCLUSIONS: The results of this study revealed multiple DEGs and possible mechanisms specifying the hypothalamic function in the hypertensive ISIAH rats. These results provide a basis for further investigation of the signalling mechanisms that affect hypothalamic output related to stress-sensitive hypertension development.


Assuntos
Perfilação da Expressão Gênica , Hipertensão/genética , Hipotálamo/metabolismo , Estresse Fisiológico/genética , Animais , Sistema Endócrino , Regulação da Expressão Gênica , Ontologia Genética , Hormônios , Hipertensão/metabolismo , Masculino , Camundongos , Ratos , Ratos Wistar
19.
BMC Genomics ; 17(Suppl 14): 989, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28105924

RESUMO

BACKGROUND: The adrenals are known as an important link in pathogenesis of arterial hypertensive disease. The study was directed to the adrenal transcriptome analysis in ISIAH rats with stress-sensitive arterial hypertension and predominant involvement in pathogenesis of the hypothalamic-pituitary-adrenal and sympathoadrenal systems. RESULTS: The RNA-Seq approach was used to perform the comparative adrenal transcriptome profiling in hypertensive ISIAH and normotensive WAG rats. Multiple differentially expressed genes (DEGs) related to different biological processes and metabolic pathways were detected. The discussion of the results helped to prioritize the several DEGs as the promising candidates for further studies of the genetic background underlying the stress-sensitive hypertension development in the ISIAH rats. Two of these were transcription factor genes (Nr4a3 and Ppard), which may be related to the predominant activation of the sympathetic-adrenal medullary axis in ISIAH rats. The other genes are known as associated with hypertension and were defined in the current study as DEGs making the most significant contribution to the inter-strain differences. Four of them (Avpr1a, Hsd11b2, Agt, Ephx2) may provoke the hypertension development, and Mpo may contribute to insulin resistance and inflammation in the ISIAH rats. CONCLUSIONS: The study strongly highlighted the complex nature of the pathogenesis of stress-sensitive hypertension. The data obtained may be useful for identifying the common molecular determinants in different animal models of arterial hypertension, which may be potentially used as therapeutic targets for pharmacological intervention.


Assuntos
Glândulas Suprarrenais/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Estresse Fisiológico , Glândulas Suprarrenais/fisiopatologia , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Hipertensão/fisiopatologia , Masculino , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
20.
BMC Genet ; 17(Suppl 3): 151, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28105926

RESUMO

BACKGROUND: The changes in the renal function leading to a reduction of medullary blood flow can have a great impact on sodium and water homeostasis and on the long-term control of arterial blood pressure. The RNA-Seq approach was used for transcriptome profiling of the renal medulla from hypertensive ISIAH and normotensive WAG rats to uncover the genetic basis of the changes underlying the renal medulla function in the ISIAH rats being a model of the stress-sensitive arterial hypertension and to reveal the genes which possibly may contribute to the alterations in medullary blood flow. RESULTS: Multiple DEGs specifying the function of renal medulla in ISIAH rats were revealed. The group of DEGs described by Gene Ontology term 'oxidation reduction' was the most significantly enriched one. The other groups of DEGs related to response to external stimulus, response to hormone (endogenous) stimulus, response to stress, and homeostatic process provide the molecular basis for integrated responses to homeostasis disturbances in the renal medulla of the ISIAH rats. Several DEGs, which may modulate the renal medulla blood flow, were detected. The reduced transcription of Nos3 pointed to the possible reduction of the blood flow in the renal medulla of ISIAH rats. CONCLUSIONS: The generated data may be useful for comparison with those from different models of hypertension and for identifying the common molecular determinants contributing to disease manifestation, which may be potentially used as new pharmacological targets.


Assuntos
Hipertensão/genética , Medula Renal/metabolismo , Transcriptoma , Animais , Pressão Sanguínea , Bases de Dados Genéticas , Análise Discriminante , Modelos Animais de Doenças , Hipertensão/etiologia , Hipertensão/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Análise de Componente Principal , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA