Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Commun ; 13(1): 7089, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402771

RESUMO

The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.


Assuntos
Actinas , Células Endoteliais , Células Endoteliais/metabolismo , Actinas/metabolismo , Retroalimentação , Transdução de Sinais , Citoesqueleto de Actina/metabolismo
2.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597939

RESUMO

Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Movimento Celular/fisiologia , Células Cultivadas , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
3.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31311803

RESUMO

The cytoarchitecture of a neuron is very important in defining morphology and ultrastructure. Although there is a wealth of information on the molecular components that make and regulate these ultrastructures, there is a dearth of understanding of how these changes occur or how they affect neurons in health and disease. Recent advances in nanoscale imaging which resolve cellular structures at the scale of tens of nanometers below the limit of diffraction enable us to understand these structures in fine detail. However, automated analysis of these images is still in its infancy. Towards this goal, attempts have been made to automate the detection and analysis of the cytoskeletal organization of microtubules. To date, evaluation of the nanoscale organization of filamentous actin (F-actin) in neuronal compartments remains challenging. Here, we present an objective paradigm for analysis which adopts supervised learning of nanoscale images of F-actin network in excitatory synapses, obtained by single molecule based super-resolution light microscopy. We have used the proposed analysis to understand the heterogeneity in the organization of F-actin in dendritic spines of primary neuronal cultures from rodents. Our results were validated using ultrastructural data obtained from platinum replica electron microscopy (PREM). The automated analysis approach was used to differentiate the heterogeneity in the nanoscale organization of F-actin in primary neuronal cultures from wild-type (WT) and a transgenic mouse model of Alzheimer's disease (APPSwe/PS1ΔE9).


Assuntos
Actinas/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado , Animais , Feminino , Hipocampo/ultraestrutura , Técnicas In Vitro , Masculino , Microscopia/métodos , Ratos Sprague-Dawley
4.
J Cell Biol ; 217(5): 1827-1845, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29507127

RESUMO

Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Junções Aderentes/ultraestrutura , Antígenos CD/metabolismo , Caderinas/metabolismo , Adesão Celular , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Modelos Biológicos , Miosina Tipo II/metabolismo , alfa Catenina/metabolismo
5.
Nat Commun ; 8: 15839, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643776

RESUMO

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Tensão Superficial
6.
J Neurosci ; 37(27): 6442-6459, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28576936

RESUMO

Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that ßIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that ßIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of ßIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by ßIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in ßIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, ßIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding ßIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking ßIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration.SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal dendrites that make synapses with axons of other neurons in the brain. Dendritic spines usually have a mushroom-like shape, which is essential for brain functions, because aberrant spine morphology is associated with many neuropsychiatric disorders. The bulbous head of a mushroom-shaped spine makes the synapse, whereas the narrow neck transmits the incoming signals to the dendrite and supposedly controls the signal propagation. We show that a cytoskeletal protein ßIII spectrin plays a key role for the formation of narrow spine necks. In the absence of ßIII spectrin, dendritic spines collapse onto dendrites. As a result, synaptic strength exceeds acceptable levels and damages neurons, explaining pathology of human syndromes caused by ßIII spectrin mutations.


Assuntos
Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Neurogênese/fisiologia , Neurônios/fisiologia , Espectrina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Células Cultivadas , Masculino , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley
7.
Mol Biol Cell ; 28(8): 1021-1033, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28228546

RESUMO

Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics.


Assuntos
Actomiosina/metabolismo , Movimento Celular/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Pseudópodes/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Dendritos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Microtúbulos/metabolismo , Modelos Moleculares , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Pseudópodes/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Mol Biol Cell ; 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27682586

RESUMO

Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing, or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact together with a key role of microtubule dynamics in neurite outgrowth led to the concept that microtubules directly drive plasma membrane protrusion, either in the course of polymerization or motor-driven sliding. Surprisingly, a possibility that unextinguished actin polymerization drives neurite outgrowth in the presence of actin drugs was not explored. We show that cultured hippocampal neurons treated with cytochalasin D or latrunculin B contained dense accumulations of branched actin filaments at ∼50% of neurite tips at all tested drug concentrations (1-10 µM). Actin polymerization was required for neurite outgrowth, because only low concentrations of either inhibitor increased the length and/or a number of neurites, whereas high concentrations inhibited neurite outgrowth. Importantly, neurites undergoing active elongation invariably contained a bright F-actin patch at the tip, whereas actin-depleted neurites never elongated, even though they still contained dynamic microtubules. Stabilization of microtubules by taxol treatment did not stop elongation of cytochalasin d-treated neurites. We conclude that actin polymerization is indispensable for neurite elongation.

9.
Cytoskeleton (Hoboken) ; 73(6): 300-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27105779

RESUMO

Extracellular matrix (ECM) remodeling during physiological processes is mediated by invasive protrusions called podosomes. Positioning and dynamics of podosomes define the extent of ECM degradation. Microtubules are known to be involved in podosome regulation, but the role of microtubule (MT) network configuration in podosome dynamics and positioning is not well understood. Here, we show that the arrangement of the microtubule network defines the pattern of podosome formation and relocation in vascular smooth muscle cells (VSMCs). We show that microtubule plus-end targeting facilitates de novo formation of podosomes, in addition to podosome remodeling. Moreover, specialized bent microtubules with plus ends reversed towards the cell center promote relocation of podosomes from the cell edge to the cell center, resulting in an evenly distributed podosome pattern. Microtubule bending is induced downstream of protein kinase C (PKC) activation and requires microtubule-stabilizing proteins known as cytoplasmic linker associated proteins (CLASPs) and retrograde actin flow. Similar to microtubule depolymerization, CLASP depletion by siRNA blocks microtubule bending and eliminates centripetal relocation of podosomes. Podosome relocation also coincides with translocation of podosome-stimulating kinesin KIF1C, which is known to move preferentially along CLASP-associated microtubules. These findings indicate that CLASP-dependent microtubule network configuration is critical to the cellular location and distribution of KIF1C-dependent podosomes. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Podossomos/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Podossomos/genética , Ratos
10.
J Cell Sci ; 127(Pt 24): 5179-88, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25344256

RESUMO

The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP-KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC.


Assuntos
Extensões da Superfície Celular/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Linhagem Celular , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos , Transdução de Sinais
11.
Mol Biol Cell ; 25(6): 800-10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24478455

RESUMO

The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity.


Assuntos
Células Epiteliais/ultraestrutura , Complexo de Golgi/ultraestrutura , Microtúbulos/ultraestrutura , Proteínas Supressoras de Tumor/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Divisão Celular , Linhagem Celular Transformada , Polaridade Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Imagem com Lapso de Tempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
12.
Nat Cell Biol ; 11(9): 1069-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19701196

RESUMO

Microtubules are indispensable for Golgi complex assembly and maintenance, which are integral parts of cytoplasm organization during interphase in mammalian cells. Here, we show that two discrete microtubule subsets drive two distinct, yet simultaneous, stages of Golgi assembly. In addition to the radial centrosomal microtubule array, which positions the Golgi in the centre of the cell, we have identified a role for microtubules that form at the Golgi membranes in a manner dependent on the microtubule regulators CLASPs. These Golgi-derived microtubules draw Golgi ministacks together in tangential fashion and are crucial for establishing continuity and proper morphology of the Golgi complex. We propose that specialized functions of these two microtubule arrays arise from their specific geometries. Further, we demonstrate that directional post-Golgi trafficking and cell migration depend on Golgi-associated CLASPs, suggesting that correct organization of the Golgi complex by microtubules is essential for cell polarization and motility.


Assuntos
Movimento Celular , Polaridade Celular , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Linhagem Celular , Centrossomo/metabolismo , Dineínas/metabolismo , Humanos , Mitose
13.
Dev Cell ; 12(6): 917-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17543864

RESUMO

Proper organization of microtubule arrays is essential for intracellular trafficking and cell motility. It is generally assumed that most if not all microtubules in vertebrate somatic cells are formed by the centrosome. Here we demonstrate that a large number of microtubules in untreated human cells originate from the Golgi apparatus in a centrosome-independent manner. Both centrosomal and Golgi-emanating microtubules need gamma-tubulin for nucleation. Additionally, formation of microtubules at the Golgi requires CLASPs, microtubule-binding proteins that selectively coat noncentrosomal microtubule seeds. We show that CLASPs are recruited to the trans-Golgi network (TGN) at the Golgi periphery by the TGN protein GCC185. In sharp contrast to radial centrosomal arrays, microtubules nucleated at the peripheral Golgi compartment are preferentially oriented toward the leading edge in motile cells. We propose that Golgi-emanating microtubules contribute to the asymmetric microtubule networks in polarized cells and support diverse processes including post-Golgi transport to the cell front.


Assuntos
Centrossomo/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Rede trans-Golgi/metabolismo , Células Cultivadas , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Centro Organizador dos Microtúbulos , Epitélio Pigmentado Ocular/metabolismo , Fuso Acromático , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA