Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(7): 1282-1289, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37334720

RESUMO

NanoLuc (NLuc) is an artificial coelenterazine-dependent luciferase generated from the deep-sea shrimp Oplophorus gracilirostris. Its peculiar properties─small size and long-lasting bright bioluminescence triggered with the synthetic substrate furimazine─have made this enzyme popular as a reporter in a variety of analytical systems. Basically, to ensure the assay specificity, NLuc is genetically fused to the polypeptide with affinity for the corresponding target. The approach, however, has a limitation for non-protein biospecific molecules, thus forcing the production of biospecific luciferase derivatives via chemical conjugation. Unfortunately, it yields a heterogeneous product and often results in the loss of a significant part of bioluminescence activity. Here, we report on NLuc site-directed conjugation by combining these two approaches: several luciferase derivatives, genetically extended with hexapeptides carrying a unique Cys residue, were obtained, and the variant with activity equal to that of the intact NLuc was found. Biospecific molecules of the most commonly used types (low-weight hapten, oligonucleotide, antibody, and DNA aptamer) were chemically attached to this NLuc variant through the unique Cys using an orthogonal conjugation approach. The resulting conjugates were tested as labels in the bioluminescence assay and were shown to detect the corresponding molecular targets (e.g., cardiac markers) with high sensitivity.


Assuntos
Luciferases , Peptídeos , Luciferases/química , Peptídeos/química
2.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768474

RESUMO

Ca2+-triggered coelenterazine-binding protein (CBP) is a natural form of the luciferase substrate involved in the Renilla bioluminescence reaction. It is a stable complex of coelenterazine and apoprotein that, unlike coelenterazine, is soluble and stable in an aquatic environment and yields a significantly higher bioluminescent signal. This makes CBP a convenient substrate for luciferase-based in vitro assay. In search of a similar substrate form for the luciferase NanoLuc, a furimazine-apoCBP complex was prepared and verified against furimazine, coelenterazine, and CBP. Furimazine-apoCBP is relatively stable in solution and in a frozen or lyophilized state, but as distinct from CBP, its bioluminescence reaction with NanoLuc is independent of Ca2+. NanoLuc turned out to utilize all the four substrates under consideration. The pairs of CBP-NanoLuc and coelenterazine-NanoLuc generate bioluminescence with close efficiency. As for furimazine-apoCBP-NanoLuc pair, the efficiency with which it generates bioluminescence is almost twice lower than that of the furimazine-NanoLuc. The integral signal of the CBP-NanoLuc pair is only 22% lower than that of furimazine-NanoLuc. Thus, along with furimazine as the most effective NanoLuc substrate, CBP can also be recommended as a substrate for in vitro analytical application in view of its water solubility, stability, and Ca2+-triggering "character".


Assuntos
Proteínas de Transporte , Medições Luminescentes , Animais , Proteínas de Transporte/metabolismo , Luciferases/metabolismo , Renilla , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA