RESUMO
The Octamer-binding transcription factor-4 (Oct4) is upregulated in different malignancies, yet a paradigm for mechanisms of Oct4 post-embryonic re-expression is inadequately understood. In cervical cancer, Oct4 expression is higher in human papillomavirus (HPV)-related than HPV-unrelated cervical cancers and this upregulation correlates with the expression of the E7 oncogene. We have reported that E7 affects the Oct4-transcriptional output and Oct4-related phenotypes in cervical cancer, however, the underlying mechanism remains elusive. Here, we characterize the Oct4-protein interactions in cervical cancer cells via computational analyses and Mass Spectrometry and reveal that Methyl-binding proteins (MBD2 and MBD3), are determinants of Oct4-driven transcription. E7 triggers MBD2 downregulation and TET1 upregulation, thereby disrupting the methylation status of the Oct4 gene. This coincides with an increase in the total DNA hydroxymethylation leading to the re-expression of Oct4 in cervical cancer and likely affecting broader transcriptional patterns. Our findings reveal a previously unreported mechanism by which the E7 oncogene can regulate Oct4 re-expression and global transcriptional patterns by increasing DNA hydroxymethylation and lowering the barrier to cellular plasticity during carcinogenesis.
Assuntos
Fator 3 de Transcrição de Octâmero , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Oxigenases de Função Mista , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Proto-Oncogênicas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Fator 3 de Transcrição de Octâmero/genéticaRESUMO
Several selective macroautophagy receptor and adaptor proteins bind members of the Atg8 (autophagy related 8) family using short linear motifs (SLiMs), most often referred to as Atg8-family interacting motifs (AIMs) or LC3-interacting regions (LIRs). AIM/LIR motifs have been extensively studied during the last fifteen years, since they can uncover the underlying biological mechanisms and possible substrates for this key catabolic process of eukaryotic cells. Prompted by the fact that experimental information regarding LIR motifs can be found scattered across heterogeneous literature resources, we have developed LIRcentral (https://lircentral.eu), a freely available online repository for user-friendly access to comprehensive, high-quality information regarding LIR motifs from manually curated publications. Herein, we describe the development of LIRcentral and showcase currently available data and features, along with our plans for the expansion of this resource. Information incorporated in LIRcentral is useful for accomplishing a variety of research tasks, including: (i) guiding wet biology researchers for the characterization of novel instances of LIR motifs, (ii) giving bioinformaticians/computational biologists access to high-quality LIR motifs for building novel prediction methods for LIR motifs and LIR containing proteins (LIRCPs) and (iii) performing analyses to better understand the biological importance/features of functional LIR motifs. We welcome feedback on the LIRcentral content and functionality by all interested researchers and anticipate this work to spearhead a community effort for sustaining this resource which will further promote progress in studying LIR motifs/LIRCPs.Abbreviations: AIM, Atg8-family interacting motif; Atg8, autophagy related 8; GABARAP, GABA type A receptor-associated protein; LIR, LC3-interacting region; LIRCP, LIR-containing protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PMID, PubMed identifier; PPI, protein-protein interaction; SLiM, short linear motif.