Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31235578

RESUMO

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Assuntos
Carcinogênese/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patologia , Glioblastoma/genética , Glioblastoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Miosina não Muscular Tipo IIA/genética
2.
Tissue Eng Part A ; 24(15-16): 1218-1227, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29397789

RESUMO

Human mesenchymal stem cell (hMSC)-based chondrogenesis is a key process used to develop tissue engineered cartilage constructs from stem cells, but the resulting constructs have inferior biochemical and biomechanical properties compared to native articular cartilage. Transforming growth factor ß containing medium is commonly applied to cell layers of hMSCs, which aggregate upon centrifugation to form 3-D constructs. The aggregation process leads to a high cell density condition, which can cause nutrient limitations during long-term culture and, subsequently, inferior quality of tissue engineered constructs. Our objective is to modulate the aggregation process by targeting RhoA/ROCK signaling pathway, the chief modulator of actomyosin contractility, to enhance the end quality of the engineered constructs. Through ROCK inhibition, repression of cytoskeletal tension in chondrogenic hMSCs was achieved along with less dense aggregates with enhanced transport properties. ROCK inhibition also led to significantly increased cartilaginous extracellular matrix accumulation. These findings can be used to create an improved microenvironment for hMSC-derived tissue engineered cartilage culture. We expect that these findings will ultimately lead to improved cartilaginous tissue development from hMSCs.


Assuntos
Cartilagem/enzimologia , Condrogênese , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/enzimologia , Transdução de Sinais , Quinases Associadas a rho/antagonistas & inibidores , Transporte Biológico Ativo , Cartilagem/citologia , Células Cultivadas , Citoesqueleto/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Quinases Associadas a rho/metabolismo
3.
J Biol Chem ; 292(8): 3099-3111, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28053086

RESUMO

Non-muscle myosin II (NMII) is a conserved force-producing cytoskeletal enzyme with important but poorly understood roles in cell migration. To investigate myosin heavy chain (MHC) phosphorylation roles in 3D migration, we expressed GFP-tagged NMIIA wild-type or mutant constructs in cells depleted of endogenous NMIIA protein. We find that individual mutation or double mutation of Ser-1916 or Ser-1943 to alanine potently blocks recruitment of GFP-NM-IIA filaments to leading edge protrusions in 2D, and this in turn blocks maturation of anterior focal adhesions. When placed in 3D collagen gels, cells expressing wild-type GFP MHC-IIA behave like parental cells, displaying robust and active formation and retraction of protrusions. However, cells depleted of NMIIA or cells expressing the mutant GFP MHC-IIA display severe defects in invasion and in stabilizing protrusions in 3D. These studies reveal an NMIIA-specific role in 3D invasion that requires competence for NMIIA phosphorylation at Ser-1916 and Ser-1943. In sum, these results demonstrate a critical and previously unrecognized role for NMIIA phosphorylation in 3D invasion.


Assuntos
Adesão Celular , Movimento Celular , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Camundongos , Cadeias Pesadas de Miosina/análise , Miosina não Muscular Tipo IIA/análise , Fosforilação
4.
Oncotarget ; 7(30): 47586-47592, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27285763

RESUMO

Despite many advances in the treatment of breast cancer, it remains one of the leading causes of death among women. One hurdle for effective therapy is the treatment of the highly invasive and tumorigenic subpopulation of tumors called cancer stem cells (CSCs). CSCs, when stimulated with EGF, migrate through a physiological 3D collagen matrix at a higher velocity than non-stem cancer cells (non-SCCs). This increased invasion is due, in part, by an enhanced nuclear translocation ability of CSCs. We observed no difference between CSC and non-SCC in cellular migration rates on a 2D surface. Furthermore, during transwell migration using large diameter transwell pores, both CSC and non-SCC populations migrated with similar efficiency. However, when challenged with more restrictive transwells, CSCs were dramatically more capable of transwell migration. These results implicate nuclear translocation as a major rate limiting factor for CSC dissemination. We further show that non-muscle myosin IIB is critical for this enhanced nuclear translocation and the ability for cancer stem cells to efficiently migrate through restrictive 3D environments. These studies suggest that cytoskeletal elements upregulated in CSCs, such as myosin IIB, may be valuable targets for intervention in cancer stem cell dispersal from tumors.


Assuntos
Núcleo Celular/metabolismo , Células-Tronco Neoplásicas/patologia , Miosina não Muscular Tipo IIB/fisiologia , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Invasividade Neoplásica
5.
Am J Pathol ; 186(5): 1351-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26988652

RESUMO

Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-ß, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-ß signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-ß isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-ß induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-ß receptor I using SB431542 ablated TGF-ß-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-ß can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers.


Assuntos
Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Neoplasias da Bexiga Urinária/patologia , Benzamidas/farmacologia , Caderinas/metabolismo , Movimento Celular/fisiologia , Dioxóis/farmacologia , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Invasividade Neoplásica , Fosforilação/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad4/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/fisiologia , Neoplasias da Bexiga Urinária/fisiopatologia , Vimentina/metabolismo
6.
J Biol Chem ; 291(12): 6083-95, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26763235

RESUMO

Pro-fibrotic mesenchymal cells are known to be the key effector cells of fibroproliferative disease, but the specific matrix signals and the induced cellular responses that drive the fibrogenic phenotype remain to be elucidated. The key mediators of the fibroblast fibrogenic phenotype were characterized using a novel assay system that measures fibroblast behavior in response to actual normal and fibrotic lung tissue. Using this system, we demonstrate that normal lung promotes fibroblast motility and polarization, while fibrotic lung immobilizes the fibroblast and promotes myofibroblast differentiation. These context-specific phenotypes are surprisingly both mediated by myosin II. The role of myosin II is supported by the observation of an increase in myosin phosphorylation and a change in intracellular distribution in fibroblasts on fibrotic lung, as compared with normal lung. Moreover, loss of myosin II activity has opposing effects on protrusive activity in fibroblasts on normal and fibrotic lung. Loss of myosin II also selectively inhibits myofibroblast differentiation in fibroblasts on fibrotic lung. Importantly, these findings are recapitulated by varying the matrix stiffness of polyacrylamide gels in the range of normal and fibrotic lung tissue. Comparison of the effects of myosin inhibition on lung tissue with that of polyacrylamide gels suggests that matrix fiber organization drives the fibroblast phenotype under conditions of normal/soft lung, while matrix stiffness drives the phenotype under conditions of fibrotic/stiff lung. This work defines novel roles for myosin II as a key regulatory effector molecule of the pro-fibrotic phenotype, in response to biophysical properties of the matrix.


Assuntos
Fibroblastos/fisiologia , Miosina Tipo II/fisiologia , Fibrose Pulmonar/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Polaridade Celular , Forma Celular , Matriz Extracelular/fisiologia , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Fibrose Pulmonar/patologia
7.
J Cell Biol ; 210(4): 583-94, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26261182

RESUMO

Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing.


Assuntos
Movimento Celular , Núcleo Celular/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo
8.
Stem Cells ; 33(7): 2114-2125, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25827713

RESUMO

Advanced cancers display cellular heterogeneity driven by self-renewing, tumorigenic cancer stem cells (CSCs). The use of cell lines to model CSCs is challenging due to the difficulty of identifying and isolating cell populations that possess differences in self-renewal and tumor initiation. To overcome these barriers in triple-negative breast cancer (TNBC), we developed a CSC system using a green fluorescent protein (GFP) reporter for the promoter of the well-established pluripotency gene NANOG. NANOG-GFP+ cells gave rise to both GFP+ and GFP(-) cells, and GFP+ cells possessed increased levels of the embryonic stem cell transcription factors NANOG, SOX2, and OCT4 and elevated self-renewal and tumor initiation capacities. GFP+ cells also expressed mesenchymal markers and demonstrated increased invasion. Compared with the well-established CSC markers CD24(-) /CD44(+) , CD49f, and aldehyde dehydrogenase (ALDH) activity, our NANOG-GFP reporter system demonstrated increased enrichment for CSCs. To explore the utility of this system as a screening platform, we performed a flow cytometry screen that confirmed increased CSC marker expression in the GFP+ population and identified new cell surface markers elevated in TNBC CSCs, including junctional adhesion molecule-A (JAM-A). JAM-A was highly expressed in GFP+ cells and patient-derived xenograft ALDH+ CSCs compared with the GFP(-) and ALDH(-) cells, respectively. Depletion of JAM-A compromised self-renewal, whereas JAM-A overexpression induced self-renewal in GFP(-) cells. Our data indicate that we have defined and developed a robust system to monitor differences between CSCs and non-CSCs in TNBC that can be used to identify CSC-specific targets for the development of future therapeutic strategies.


Assuntos
Genes Reporter/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
9.
Curr Biol ; 25(2): 175-186, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25544611

RESUMO

BACKGROUND: Cell migration requires coordinated formation of focal adhesions (FAs) and assembly and contraction of the actin cytoskeleton. Nonmuscle myosin II (MII) is a critical mediator of contractility and FA dynamics in cell migration. Signaling downstream of the small GTPase Rac1 also regulates FA and actin dynamics, but its role in regulation of MII during migration is less clear. RESULTS: We found that Rac1 promotes association of MIIA with FA. Live-cell imaging showed that, whereas most MIIA at the leading edge assembled into dorsal contractile arcs, a substantial subset assembled in or was captured within maturing FA, and this behavior was promoted by active Rac1. Protein kinase C (PKC) activation was necessary and sufficient for integrin- and Rac1-dependent phosphorylation of MIIA heavy chain (HC) on serine1916 (S1916) and recruitment to FA. S1916 phosphorylation of MIIA HC and localization in FA was enhanced during cell spreading and ECM stiffness mechanosensing, suggesting upregulation of this pathway during physiological Rac1 activation. Phosphomimic and nonphosphorylatable MIIA HC mutants demonstrated that S1916 phosphorylation was necessary and sufficient for the capture and assembly of MIIA minifilaments in FA. S1916 phosphorylation was also sufficient to promote the rapid assembly of FAs to enhance cell migration and for the modulation of traction force, spreading, and migration by ECM stiffness. CONCLUSIONS: Our study reveals for the first time that Rac1 and integrin activation regulates MIIA HC phosphorylation through a PKC-dependent mechanism that promotes MIIA association with FAs and acts as a critical modulator of cell migration and mechanosensing.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular , Humanos , Mecanotransdução Celular/fisiologia , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
PLoS One ; 8(11): e81081, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312263

RESUMO

Bladder cancer is the fourth most common cause of cancer in males in the United States. Invasive behavior is a major determinant of prognosis. In this study, we identified mammalian target of rapamycin complex 2 (mTORC2) as a central regulator of bladder cancer cell migration and invasion. mTORC2 activity was assessed by the extent of phosphorylation of Ser473 in AKT and determined to be approximately 5-fold higher in specimens of invasive human bladder cancer as opposed to non-invasive human bladder cancer. The immortalized malignant bladder cell lines, UMUC-3, J82 and T24 demonstrated higher baseline mTORC2 activity relative to the benign bladder papilloma-derived cell line RT4 and the normal urothelial cell line HU1. The malignant bladder cancer cells also demonstrated increased migration in transwell and denudation assays, increased invasion of matrigel, and increased capacity to invade human bladder specimens. Gene silencing of rictor, a critical component of mTORC2, substantially inhibited bladder cancer cell migration and invasion. This was accompanied by a significant decrease in Rac1 activation and paxillin phosphorylation. These studies identify mTORC2 as a major target for neutralizing bladder cancer invasion.


Assuntos
Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Movimento Celular , Progressão da Doença , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Invasividade Neoplásica , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Dev Biol ; 382(1): 136-48, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911870

RESUMO

In studies initially focused on roles of nonmuscle myosin IIA (NMIIA) in the developing mouse epidermis, we have discovered that a previously described cytokeratin 5 (K5)-Cre gene construct is expressed in early embryo development. Mice carrying floxed alleles of the nonmuscle myosin II heavy chain gene (NMHC IIA(flox/flox)) were crossed with the K5-Cre line. The progeny of newborn pups did not show a Mendelian genotype distribution, suggesting embryonic lethality. Analysis of post-implantation conceptuses from embryonic day (E)9.5 to E13.5 revealed poorly developed embryos and defective placentas, with significantly reduced labyrinth surface area and blood vessel vascularization. These results suggested the novel possibility that the bovine K5 promoter-driven Cre-recombinase was active early in trophoblast-lineage cells that give rise to the placenta. To test this possibility, K5-Cre transgenic mice were crossed with the mT/mG reporter mouse in which activation of GFP expression indicates Cre transgene expression. We observed activation of K5-Cre-driven GFP expression in the ectoplacental cone, in the extraembryonic ectoderm, and in trophoblast giant cells in the E6.5 embryo. In addition, we observed GFP expression at E11.5 to E13.5 in both the labyrinth of the placenta and the yolk sac. NMIIA expression was detected in these same cell types in normal embryos, as well as in E13.5 yolk sac and labyrinth. These findings taken together suggest that NMHC IIA may play critical roles in the early trophoblast-derived ectoplacental cone and extraembryonic ectoderm, as well as in the yolk sac and labyrinth tissues that form later. Our findings are consistent with phenotypes of constitutive NMIIA knockout mice made earlier, that displayed labyrinth and yolk sac-specific defects, but our findings extend those observations by suggesting possible NMIIA roles in trophoblast lineages as well. These results furthermore demonstrate that K5-Cre gene constructs, previously reported to be activated starting at approximately E12.5 in the forming epidermis, may be widely useful as drivers for activation of cre/lox based gene excision in early embryo extraembronic trophoblast tissues as well.


Assuntos
Ectoderma/embriologia , Perda do Embrião/patologia , Integrases/metabolismo , Queratina-5/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Alelos , Animais , Animais Recém-Nascidos , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Bovinos , Linhagem da Célula , Proliferação de Células , Cruzamentos Genéticos , Ectoderma/metabolismo , Ectoderma/patologia , Perda do Embrião/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Epiderme/embriologia , Epiderme/metabolismo , Epiderme/patologia , Feminino , Deleção de Genes , Genótipo , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez , Saco Vitelino/metabolismo
12.
Sci Signal ; 6(284): ra60, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23861542

RESUMO

Tumor necrosis factor-α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α-induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. We identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α-dependent signaling by p75 and induction of target gene expression persisted substantially longer in cells deficient in myosin regulatory light chain (MRLC; a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α-dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α-dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling.


Assuntos
Citosol/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Miosina Tipo II/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Miosina Tipo II/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
13.
J Cell Sci ; 125(Pt 20): 4934-44, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22899719

RESUMO

Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Cálcio , Movimento Celular , Dictyostelium , Proteínas de Protozoários , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Agregação Celular/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Quimiotaxia/genética , Quimiotaxia/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Deleção de Sequência
14.
Mol Biol Cell ; 23(16): 3057-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22718904

RESUMO

Cell polarization is essential for migration and the exploratory function of leukocytes. However, the mechanism by which cells maintain polarity or how cells revert to the immobilized state by gaining cellular symmetry is not clear. Previously we showed that interaction between oxidized low-density lipoprotein (oxLDL) and CD36 inhibits macrophage migration; in the current study we tested the hypothesis that oxLDL/CD36-induced inhibition of migration is the result of intracellular signals that regulate cell polarity. Live cell imaging of macrophages showed that oxLDL actuated retraction of macrophage front end lamellipodia and induced loss of cell polarity. Cd36 null and macrophages null for Vav, a guanine nucleotide exchange factor (GEF), did not show this effect. These findings were caused by Rac-mediated inhibition of nonmuscle myosin II, a cell polarity determinant. OxLDL induced dephosphorylation of myosin regulatory light chain (MRLC) by increasing the activity of Rac. Six-thioguanine triphosphate (6-thio-GTP), which inhibits Vav-mediated activation of Rac, abrogated the effect of oxLDL. Activation of the Vav-Rac-myosin II pathway by oxidant stress may induce trapping of macrophages at sites of chronic inflammation such as atherosclerotic plaque.


Assuntos
Antígenos CD36/metabolismo , Movimento Celular , Polaridade Celular , Lipoproteínas LDL/fisiologia , Macrófagos Peritoneais/fisiologia , Animais , Azepinas/farmacologia , Antígenos CD36/genética , Células COS , Chlorocebus aethiops , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/farmacologia , Células HeLa , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-vav/genética , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Tionucleotídeos/farmacologia , Imagem com Lapso de Tempo , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/metabolismo
15.
BMC Cell Biol ; 12: 52, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22136066

RESUMO

BACKGROUND: Phosphorylation of non-muscle myosin II regulatory light chain (RLC) at Thr18/Ser19 is well established as a key regulatory event that controls myosin II assembly and activation, both in vitro and in living cells. RLC can also be phosphorylated at Ser1/Ser2/Thr9 by protein kinase C (PKC). Biophysical studies show that phosphorylation at these sites leads to an increase in the Km of myosin light chain kinase (MLCK) for RLC, thereby indirectly inhibiting myosin II activity. Despite unequivocal evidence that PKC phosphorylation at Ser1/Ser2/Thr9 can regulate myosin II function in vitro, there is little evidence that this mechanism regulates myosin II function in live cells. RESULTS: The purpose of these studies was to investigate the role of Ser1/Ser2/Thr9 phosphorylation in live cells. To do this we utilized phospho-specific antibodies and created GFP-tagged RLC reporters with phosphomimetic aspartic acid substitutions or unphosphorylatable alanine substitutions at the putative inhibitory sites or the previously characterized activation sites. Cell lines stably expressing the RLC-GFP constructs were assayed for myosin recruitment during cell division, the ability to complete cell division, and myosin assembly levels under resting or spreading conditions. Our data shows that manipulation of the activation sites (Thr18/Ser19) significantly alters myosin II function in a number of these assays while manipulation of the putative inhibitory sites (Ser1/Ser2/Thr9) does not. CONCLUSIONS: These studies suggest that inhibitory phosphorylation of RLC is not a substantial regulatory mechanism, although we cannot rule out its role in other cellular processes or perhaps other types of cells or tissues in vivo.


Assuntos
Cadeias Leves de Miosina/metabolismo , Miosina Tipo II/metabolismo , Serina/metabolismo , Treonina/metabolismo , Domínio Catalítico , Divisão Celular , Células Cultivadas , Células HeLa , Humanos , Cadeias Leves de Miosina/química , Miosina Tipo II/química , Fosforilação , Serina/química , Treonina/química
16.
Proc Natl Acad Sci U S A ; 108(44): 17991-6, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025714

RESUMO

Despite functional significance of nonmuscle myosin II in cell migration and invasion, its role in epithelial-mesenchymal transition (EMT) or TGF-ß signaling is unknown. Analysis of normal mammary gland expression revealed that myosin IIC is expressed in luminal cells, whereas myosin IIB expression is up-regulated in myoepithelial cells that have more mesenchymal characteristics. Furthermore, TGF-ß induction of EMT in nontransformed murine mammary gland epithelial cells results in an isoform switch from myosin IIC to myosin IIB and increased phosphorylation of myosin heavy chain (MHC) IIA on target sites known to regulate filament dynamics (S1916, S1943). These expression and phosphorylation changes are downstream of heterogeneous nuclear ribonucleoprotein-E1 (E1), an effector of TGF-ß signaling. E1 knockdown drives cells into a migratory, invasive mesenchymal state and concomitantly up-regulates MHC IIB expression and MHC IIA phosphorylation. Abrogation of myosin IIB expression in the E1 knockdown cells has no effect on 2D migration but significantly reduced transmigration and macrophage-stimulated collagen invasion. These studies indicate that transition between myosin IIC/myosin IIB expression is a critical feature of EMT that contributes to increases in invasive behavior.


Assuntos
Transição Epitelial-Mesenquimal , Miosina Tipo II/metabolismo , Isoformas de Proteínas/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Animais , Linhagem Celular , Camundongos , Fosforilação
17.
Mol Biol Cell ; 22(13): 2270-81, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21562226

RESUMO

Abnormalities in the huntingtin protein (Htt) are associated with Huntington's disease. Despite its importance, the function of Htt is largely unknown. We show that Htt is required for normal chemotaxis and cytokinesis in Dictyostelium discoideum. Cells lacking Htt showed slower migration toward the chemoattractant cAMP and contained lower levels of cortical myosin II, which is likely due to defects in dephosphorylation of myosin II mediated by protein phosphatase 2A (PP2A). htt(-) cells also failed to maintain myosin II in the cortex of the cleavage furrow, generating unseparated daughter cells connected through a thin cytoplasmic bridge. Furthermore, similar to Dictyostelium htt(-) cells, siRNA-mediated knockdown of human HTT also decreased the PP2A activity in HeLa cells. Our data indicate that Htt regulates the phosphorylation status of myosin II during chemotaxis and cytokinesis through PP2A.


Assuntos
Quimiotaxia/fisiologia , Citocinese/fisiologia , Dictyostelium/citologia , Dictyostelium/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Divisão Celular/genética , Divisão Celular/efeitos da radiação , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Quimiotaxia/genética , AMP Cíclico/metabolismo , Dictyostelium/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Miosina Tipo II/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
18.
Eukaryot Cell ; 10(4): 604-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21357476

RESUMO

In Dictyostelium discoideum, myosin II resides predominantly in a soluble pool as the result of phosphorylation of the myosin heavy chain (MHC), and dephosphorylation of the MHC is required for myosin II filament assembly, recruitment to the cytoskeleton, and force production. Protein phosphatase type 2A (PP2A) was identified in earlier studies in Dictyostelium as a key biochemical activity that can drive MHC dephosphorylation. We report here gene targeting and cell biological studies addressing the roles of candidate PP2A B regulatory subunits (phr2aBα and phr2aBß) in myosin II assembly control in vivo. Dictyostelium phr2aBα- and phr2aBß-null cells show delayed development, reduction in the assembly of myosin II in cytoskeletal ghost assays, and defects in cytokinesis when grown in suspension compared to parental cell lines. These results demonstrate that the PP2A B subunits phr2aBα and phr2aBß contribute to myosin II assembly control in vivo, with phr2aBα having the predominant role facilitating MHC dephosphorylation to facilitate filament assembly.


Assuntos
Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Movimento Celular/fisiologia , Citocinese/fisiologia , Dictyostelium/citologia , Dictyostelium/genética , Marcação de Genes , Miosina Tipo II/genética , Fosforilação , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Proteínas de Protozoários/genética
19.
J Mol Biol ; 407(5): 673-86, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21316371

RESUMO

Myosin II motor proteins play important roles in cell migration. Although myosin II filament assembly plays a key role in the stabilization of focal contacts at the leading edge of migrating cells, the mechanisms and signaling pathways regulating the localized assembly of lamellipodial myosin II filaments are poorly understood. We performed a proteomic analysis of myosin heavy chain (MHC) phosphorylation sites in MDA-MB 231 breast cancer cells to identify MHC phosphorylation sites that are activated during integrin engagement and lamellar extension on fibronectin. Fibronectin-activated MHC phosphorylation was identified on novel and previously recognized consensus sites for phosphorylation by protein kinase C and casein kinase II (CK-II). S1943, a CK-II consensus site, was highly phosphorylated in response to matrix engagement, and phosphoantibody staining revealed phosphorylation on myosin II assembled into leading-edge lamellae. Surprisingly, neither pharmacological reduction nor small inhibitory RNA reduction in CK-II activity reduced this stimulated S1943 phosphorylation. Our data demonstrate that S1943 phosphorylation is upregulated during lamellar protrusion, and that CK-II does not appear to be the kinase responsible for this matrix-induced phosphorylation event.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Miosina Tipo II/metabolismo , Proteoma/análise , Animais , Células COS , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Fibronectinas/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Biomed Microdevices ; 12(3): 543-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20309736

RESUMO

To study the roles of nonmuscle myosin II (NM-II) during invasive cell migration, microfluidic migration chambers have been designed and fabricated using photo- and soft-lithography microfabrication techniques. The chamber consists of two channels separated by a vertical barrier with multiple bays of pores with widths varying from 6 microm to 16 microm, and lengths varying from 25 microm to 50 microm. The cells are plated in the channel on one side of the barrier while a chemoattractant is flowed through the channel on the other side of the barrier. In these chambers, cells can be observed with transmitted light or fluorescence optics while they chemotax through various sized pores that impose differential mechanical resistance to transmigration. As an initial test of this device, we compared breast-cancer cell chemotactic transmigration through different pore sizes with and without inhibition of NM-II. Two distinct rates were observed as cells attempted to pull their nucleus through the smaller pores, and the faster nuclear transit mode was critically dependent on NM-II motor activity. The ability to monitor cells as they chemotax through pores of different dimensions within a single experimental system provides novel information on how pore size affects cell morphology and migration rate, providing a dramatic improvement of imaging potential relative to other in vitro transmigration systems such as Boyden chambers.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Quimiotaxia , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Miosina Tipo II/metabolismo , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Separação Celular/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/instrumentação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA