Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Immunol ; 8(85): eabo4767, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478192

RESUMO

Endotoxin-bacterial lipopolysaccharide (LPS)-is a driver of lethal infection sepsis through excessive activation of innate immune responses. When delivered to the cytosol of macrophages, cytosolic LPS (cLPS) induces the assembly of an inflammasome that contains caspases-4/5 in humans or caspase-11 in mice. Whereas activation of all other inflammasomes is triggered by sensing of pathogen products by a specific host cytosolic pattern recognition receptor protein, whether pattern recognition receptors for cLPS exist has remained unclear, because caspase-4, caspase-5, and caspase-11 bind and activate LPS directly in vitro. Here, we show that the primate-specific protein NLRP11 is a pattern recognition receptor for cLPS that is required for efficient activation of the caspase-4 inflammasome in human macrophages. In human macrophages, NLRP11 is required for efficient activation of caspase-4 during infection with intracellular Gram-negative bacteria or upon electroporation of LPS. NLRP11 could bind LPS and separately caspase-4, forming a high-molecular weight complex with caspase-4 in HEK293T cells. NLRP11 is present in humans and other primates but absent in mice, likely explaining why it has been overlooked in screens looking for innate immune signaling molecules, most of which have been carried out in mice. Our results demonstrate that NLRP11 is a component of the caspase-4 inflammasome activation pathway in human macrophages.


Assuntos
Inflamassomos , Lipopolissacarídeos , Humanos , Animais , Camundongos , Citosol/microbiologia , Células HEK293 , Macrófagos , Caspases , Receptores de Reconhecimento de Padrão/metabolismo
2.
mBio ; 12(6): e0302121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809452

RESUMO

Shigella spp. are human bacterial pathogens that cause bacillary dysentery. Virulence depends on a type 3 secretion system (T3SS), a highly conserved structure present in multiple important human and plant pathogens. Upon host cell contact, the T3SS translocon is delivered to the host membrane, facilitates bacterial docking to the membrane, and enables delivery of effector proteins into the host cytosol. The Shigella translocon is composed of two proteins, IpaB and IpaC, which together form this multimeric structure within host plasma membranes. Upon interaction of IpaC with host intermediate filaments, the translocon undergoes a conformational change that allows for bacterial docking onto the translocon and, together with host actin polymerization, enables subsequent effector translocation through the translocon pore. To generate additional insights into the translocon, we mapped the topology of IpaB in plasma membrane-embedded pores using cysteine substitution mutagenesis coupled with site-directed labeling and proximity-enabled cross-linking by membrane-permeant sulfhydryl reactants. We demonstrate that IpaB function is dependent on posttranslational modification by a plasmid-encoded acyl carrier protein. We show that the first transmembrane domain of IpaB lines the interior of the translocon pore channel such that the IpaB portion of the channel forms a funnel-like shape leading into the host cytosol. In addition, we identify regions of IpaB within its cytosolic domain that protrude into and are closely associated with the pore channel. Taken together, these results provide a framework for how IpaB is arranged within translocons natively delivered by Shigella during infection. IMPORTANCE Type 3 secretion systems are nanomachines employed by many bacteria, including Shigella, which deliver into human cells bacterial virulence proteins that alter cellular function in ways that promote infection. Delivery of Shigella virulence proteins occurs through a pore formed in human cell membranes by the IpaB and IpaC proteins. Here, we define how IpaB contributes to the formation of pores natively delivered into human cell membranes by Shigella flexneri. We show that a specific domain of IpaB (transmembrane domain 1) lines much of the pore channel and that portions of IpaB that lie in the inside of the human cell loop back into and/or are closely associated with the pore channel. These findings provide new insights into the organization and function of the pore in serving as the conduit for delivery of virulence proteins into human cells during Shigella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Disenteria Bacilar/microbiologia , Shigella flexneri/metabolismo , Transferases/metabolismo , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Humanos , Domínios Proteicos , Shigella flexneri/química , Shigella flexneri/genética , Transferases/genética , Sistemas de Secreção Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA