RESUMO
Wildlife translocations, which involve the introduction of naive hosts into new environments with novel pathogens, invariably pose an increased risk of disease. The meningeal worm Parelaphostrongylus tenuis is a nematode parasite of the white-tailed deer (Odocoileus virginianus), which serves as its primary host and rarely suffers adverse effects from infection. Attempts to restore elk (Cervus canadensis) to the eastern US have been hampered by disease caused by this parasite. Using DNA sequence data from mitochondrial and nuclear genes, we examined the hypothesis that elk translocated within the eastern US could be exposed to novel genetic variants of P. tenuis by detailing the genetic structure among P. tenuis taken from white-tailed deer and elk at a source (Kentucky) and a release site (Missouri). We found high levels of diversity at both mitochondrial and nuclear DNA in Missouri and Kentucky and a high level of differentiation between states. Our results highlight the importance of considering the potential for increased disease risk from exposure to novel strains of parasites in the decision-making process of a reintroduction or restoration.
Assuntos
Animais Selvagens/parasitologia , Infecções por Strongylida/veterinária , Estrongilídios , Animais , Cervos/parasitologia , Recuperação e Remediação Ambiental , Genes de Helmintos , Variação Genética , Kentucky , Missouri , Ruminantes/parasitologia , Estrongilídios/genética , Estrongilídios/isolamento & purificaçãoRESUMO
Conservation of wide-ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple-use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide-ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control-region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year-round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well-managed MUAs will likely be important to the conservation of wide-ranging species.
Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Elefantes/fisiologia , Meio Ambiente , Distribuição por Idade , Animais , Elefantes/genética , Fezes/química , Feminino , Gabão , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Dinâmica Populacional , Estações do Ano , Análise de Sequência de DNA , Distribuição por SexoRESUMO
Biodiversity conservation strategies are increasingly focused on regions outside national protected areas, where animals face numerous anthropogenic threats and must coexist with human settlements, livestock, and agriculture. The effects of these potential threats are not always clear, but they could have profound implications for population viability. We used savannah elephants (Loxodonta africana) as a case study to assess the physiological stress associated with living in a human-livestock-dominated landscape. We collected samples over two 3-month periods in 2007 and 2008. We used fecal DNA to identify 96 individual elephants in a community conservation area (CCA) and measured fecal glucocorticoid metabolite (FGM) concentrations as a proxy for stress. The CCA is community Maasai land managed for livestock and wildlife. We compared the FGM concentrations from the CCA to FGM concentrations of 40 elephants in Amboseli National Park and 32 elephants in the Maasai Mara National Reserve, where human settlements and intense livestock grazing were absent. In the CCA, we found no significant individual differences in FGM concentrations among the elephants in 2007 (p = 0.312) or 2008 (p = 0.412) and no difference between years (p = 0.616). The elephants in the CCA had similar FGM concentrations to the Maasai Mara population, but Amboseli elephants had significantly lower FGM concentrations than those in either Maasai Mara or the CCA (Tukey pairwise test, p < 0.001), due primarily to females excreting significantly lower FGM relative to males (p = 0.025). In the CCA, there was no relation among female group size, average pairwise group relatedness, and average group FGM concentration. We found no clear evidence of chronic stress in elephants living on CCA communal land, which is encouraging for conservation strategies promoting the protection of animals living outside protected areas.
Assuntos
Conservação dos Recursos Naturais , Elefantes/fisiologia , Glucocorticoides/metabolismo , Estresse Fisiológico , Animais , Elefantes/genética , Fezes/química , Feminino , Genótipo , Humanos , Masculino , Fatores SexuaisRESUMO
The evolution of larger mammals resulted in a corresponding increase in peripheral nerve length. To ensure optimal nervous system functionality and survival, nerve conduction velocities were likely to have increased to maintain the rate of signal propagation. Increases of conduction velocities may have required alterations in one of the two predominant properties that affect the speed of neuronal transmission: myelination or axonal diameter. A plausible mechanism to explain faster conduction velocities was a concomitant increase in axonal diameter with evolving axonal length. The carboxy terminal tail domain of the neurofilament medium subunit is a determinant of axonal diameter in large caliber myelinated axons. Sequence analysis of mammalian orthologs indicates that the neurofilament medium carboxy terminal tail contains a variable lysine-serine-proline (KSP) repeat sub-domain flanked by two highly conserved sub-domains. The number of KSP repeats within this region of neurofilament medium varies among species. Interestingly, the number of repeats does not change within a species, suggesting that selective pressure conserved the number of repeats within a species. Mapping KSP repeat numbers onto consensus phylogenetic trees reveals independent KSP expansion events across several mammalian clades. Linear regression analyses identified three subsets of mammals, one of which shows a positive correlation in the number of repeats with head-body length. For this subset of mammals, we hypothesize that variations in the number of KSP repeats within neurofilament medium carboxy terminal tail may have contributed to an increase in axonal caliber, increasing nerve conduction velocity as larger mammals evolved.
Assuntos
Axônios/ultraestrutura , Proteínas de Neurofilamentos/análise , Proteínas de Neurofilamentos/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Ratos , Sequências Repetitivas de Aminoácidos , Alinhamento de SequênciaRESUMO
The endangered Asian elephant is found today primarily in protected areas. We characterized 18 dinucleotide microsatellite loci in this species. Allelic diversity ranged from three to eight per locus, and observed heterozygosity ranged from 0.200 to 0.842 in a wild population. All loci were in Hardy-Weinberg equilibrium, but linkage disequilibrium was detected between two loci in the wild, but not in the zoo elephants. These loci will be useful for the population-level studies of this species.
RESUMO
We report the isolation and characterization of 17 polymorphic microsatellite loci in the North American raccoon (Procyon lotor). These loci exhibit high levels of allelic diversity, with between four and 13 alleles per locus, and heterozygosity, with observed values of 0.500-1.000 in a sample of 20 individuals. All genotypes conformed to Hardy-Weinberg expectations and there were no instances of linkage disequilibrium detected.
RESUMO
An isolated population of dark-eyed juncos, Junco hyemalis, became established on the campus of the University of California at San Diego (UCSD), probably in the early 1980s. It now numbers about 70 breeding pairs. Populations across the entire natural range of the subspecies J. h. thurberi are weakly differentiated from each other at five microsatellite loci (FST = 0.01). The UCSD population is significantly different from these populations, the closest of which is 70 km away. It has 88% of the genetic heterozygosity and 63% of the allelic richness of populations in the montane range of the subspecies, consistent with a harmonic mean effective population size of 32 (but with 95% confidence limits from four to > 70) over the eight generations since founding. Results suggest a moderate bottleneck in the early establishment phase but with more than seven effective founders. Individuals in the UCSD population have shorter wings and tails than those in the nearby mountains and a common garden experiment indicates that the morphological differences are genetically based. The moderate effective population size is not sufficient for the observed morphological differences to have evolved as a consequence of genetic drift, indicating a major role for selection subsequent to the founding of the UCSD population.
Assuntos
Evolução Biológica , Efeito Fundador , Variação Genética , Genética Populacional , Aves Canoras/genética , Animais , California , Primers do DNA , Frequência do Gene , Repetições de Microssatélites/genética , Oregon , Seleção Genética , Aves Canoras/anatomia & histologia , Cauda/anatomia & histologia , Asas de Animais/anatomia & histologiaRESUMO
African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.