Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Children (Basel) ; 10(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37508657

RESUMO

BACKGROUND: Asparaginase is a key component of chemotherapy protocols for the treatment of lymphoblastic malignancies among children. Adequate asparagine depletion is an important factor to achieve optimal therapeutic outcomes. METHODS: Over a 3.5 year period, 106 patients were monitored for asparaginase activity (329 samples) in a single center of the Hungarian Pediatric Oncology-Hematology Group. In Hungary, three asparaginase products are available: native E. coli ASNase (Kidrolase), a pegylated form of this enzyme (Pegaspargase) and another native product from Erwinia chrysanthemi (Erwinase). A retrospective data analysis was performed. RESULTS: In 81% (268/329) of our patients, AEA levels were in the optimal therapeutic range of over 100 IU/L. Of 106 patients, 13 (12%) were diagnosed with 'silent inactivation'. CONCLUSIONS: Monitoring of AEA can help to identify patients with 'silent inactivation' and their asparaginase therapy can thus be optimized.

2.
Br J Cancer ; 129(3): 455-465, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340093

RESUMO

BACKGROUND: Recurrent genetic lesions provide basis for risk assessment in pediatric acute lymphoblastic leukemia (ALL). However, current prognostic classifiers rely on a limited number of predefined sets of alterations. METHODS: Disease-relevant copy number aberrations (CNAs) were screened genome-wide in 260 children with B-cell precursor ALL. Results were integrated with cytogenetic data to improve risk assessment. RESULTS: CNAs were detected in 93.8% (n = 244) of the patients. First, cytogenetic profiles were combined with IKZF1 status (IKZF1normal, IKZF1del and IKZF1plus) and three prognostic subgroups were distinguished with significantly different 5-year event-free survival (EFS) rates, IKAROS-low (n = 215): 86.3%, IKAROS-medium (n = 27): 57.4% and IKAROS-high (n = 18): 37.5%. Second, contribution of genetic aberrations to the clinical outcome was assessed and an aberration-specific score was assigned to each prognostically relevant alteration. By aggregating the scores of aberrations emerging in individual patients, personalized cumulative values were calculated and used for defining four prognostic subgroups with distinct clinical outcomes. Two favorable subgroups included 60% of patients (n = 157) with a 5-year EFS of 96.3% (excellent risk, n = 105) and 87.2% (good risk, n = 52), respectively; while 40% of patients (n = 103) showed high (n = 74) or ultra-poor (n = 29) risk profile (5-year EFS: 67.4% and 39.0%, respectively). CONCLUSIONS: PersonALL, our conceptually novel prognostic classifier considers all combinations of co-segregating genetic alterations, providing a highly personalized patient stratification.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Medição de Risco , Fator de Transcrição Ikaros/genética , Deleção de Genes
3.
J Mol Diagn ; 25(8): 555-568, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088137

RESUMO

Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Criança , Mutação , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Sequenciamento de Nucleotídeos em Larga Escala , Recidiva , Genômica
4.
Mol Cell Probes ; 67: 101893, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640912

RESUMO

BACKGROUND: Minimal residual disease (MRD) is one of the most valuable independent prognostic factors in acute lymphoblastic leukemia (ALL). Bone marrow (BM) aspiration, however, is an invasive process. Previous studies have shown that microRNAs (miR) and extracellular vesicle (EV)-related miRs show different expression profiles at the presence of malignant cells compared to healthy controls. In our previous project, we have reported that two miRs previously described to be overexpressed in blasts were significantly decreased over the first week of the therapy of patients with ALL in the platelet free plasma fraction (PFP) of peripheral blood samples (PB). The aim of the current study was to assess the relation between day 15 flow cytometry (FC) MRD and expression of miR-128-3p and miR-222-3p miRs in exosome-enriched fraction (EEF) of PFP to evaluate whether their expression in EEF correlates with day 15 FC MRD more precisely. METHODS: PB was collected from 13 patients diagnosed with pediatric pre-B ALL at 4 time points. Expression of miR-128-3p and miR-222-3p was measured by qPCR in PFP and EEF. RESULTS: Positive correlation was found between changes of miR-128-3p expression in EEF or PFP by day 8 of chemotherapy and day 15 FC MRD (rEEF = 0.99, pEEF = 1.13E-9 and rPFP = 0.99, pPFP = 4.75E-9, respectively). Furthermore, the decrease of miR-128-3p in EEF by day 15 of treatment also showed a positive correlation with day 15 FC MRD (rEEF = 0.96; pEEF = 4.89E-5). CONCLUSION: Our results show that circulating miRs are potential biomarkers of ALL MRD, asmiR-128-3p level both in PFP and EEF predicts day 15 FC MRD. In addition, the assessment of the EEF gave a more promising result.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Biomarcadores Tumorais , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
5.
Pathol Oncol Res ; 28: 1610096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449729

RESUMO

Central nervous system (CNS) involvement is a leading cause of therapy-refractory pediatric acute lymphoblastic leukemia (pALL), which is aggravated by underdiagnosing CNS disease with the currently used cell-based approach of cerebrospinal fluid (CSF) diagnostics. Our study focused on developing novel subcellular CNS leukemia indicators in the CSF and the bone marrow (BM) of patients with pALL. Serial liquid biopsy samples (n = 65) were analyzed by Elisas to measure the level of essential proteins associated with blast cell CNS trafficking, vascular endothelial growth factor A (VEGF-A) and integrin alpha 6 (ITGA6). In CSF samples from early induction chemotherapy, VEGF-A concentration were uniformly elevated in the CNS-positive group compared to those patients without unambiguous meningeal infiltration (9 vs Nine patients, Δc = 17.2 pg/ml, p = 0.016). Expression of miR-181a, a VEGFA-regulating microRNA which showed increased level in CNS leukemia in our previous experiments, was then paralleled with VEGF-A concentration. A slight correlation between the levels of miR-181a and VEGF-A indicators in CSF and BM samples was revealed (n = 46, Pearson's r = 0.36, p = 0.015). After validating in international cohorts, the joint quantification of miR-181a and VEGF-A might provide a novel tool to precisely diagnose CNS involvement and adjust CNS-directed therapy in pALL.


Assuntos
Neoplasias do Sistema Nervoso Central , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/genética , Criança , Humanos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830811

RESUMO

Single-cell sequencing (SCS) provides high-resolution insight into the genomic, epigenomic, and transcriptomic landscape of oncohematological malignancies including pediatric leukemia, the most common type of childhood cancer. Besides broadening our biological understanding of cellular heterogeneity, sub-clonal architecture, and regulatory network of tumor cell populations, SCS can offer clinically relevant, detailed characterization of distinct compartments affected by leukemia and identify therapeutically exploitable vulnerabilities. In this review, we provide an overview of SCS studies focused on the high-resolution genomic and transcriptomic scrutiny of pediatric leukemia. Our aim is to investigate and summarize how different layers of single-cell omics approaches can expectedly support clinical decision making in the future. Although the clinical management of pediatric leukemia underwent a spectacular improvement during the past decades, resistant disease is a major cause of therapy failure. Currently, only a small proportion of childhood leukemia patients benefit from genomics-driven therapy, as 15-20% of them meet the indication criteria of on-label targeted agents, and their overall response rate falls in a relatively wide range (40-85%). The in-depth scrutiny of various cell populations influencing the development, progression, and treatment resistance of different disease subtypes can potentially uncover a wider range of driver mechanisms for innovative therapeutic interventions.

7.
Cancers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066083

RESUMO

Despite improving cure rates in childhood acute lymphoblastic leukemia (ALL), therapeutic side effects and relapse are ongoing challenges. These can also affect the central nervous system (CNS). Our aim was to identify germline gene polymorphisms that influence the risk of CNS events. Sixty single nucleotide polymorphisms (SNPs) in 20 genes were genotyped in a Hungarian non-matched ALL cohort of 36 cases with chemotherapy related acute toxic encephalopathy (ATE) and 544 controls. Five significant SNPs were further analyzed in an extended Austrian-Czech-NOPHO cohort (n = 107 cases, n = 211 controls) but none of the associations could be validated. Overall populations including all nations' matched cohorts for ATE (n = 426) with seizure subgroup (n = 133) and posterior reversible encephalopathy syndrome (PRES, n = 251) were analyzed, as well. We found that patients with ABCB1 rs1045642, rs1128503 or rs2032582 TT genotypes were more prone to have seizures but those with rs1045642 TT developed PRES less frequently. The same SNPs were also examined in relation to ALL relapse on a case-control matched cohort of 320 patients from all groups. Those with rs1128503 CC or rs2032582 GG genotypes showed higher incidence of CNS relapse. Our results suggest that blood-brain-barrier drug transporter gene-polymorphisms might have an inverse association with seizures and CNS relapse.

8.
Orv Hetil ; 162(17): 652-667, 2021 04 10.
Artigo em Húngaro | MEDLINE | ID: mdl-33838024

RESUMO

Összefoglaló. A SARS-CoV-2-fertozés ritka gyermekkori szövodménye a sokszervi gyulladás, angol terminológiával paediatric inflammatory multisystem syndrome (PIMS). Két vagy több szerv érintettségével járó, súlyos tünetekkel induló betegségrol van szó, amelynek tünetei átfedést mutatnak a Kawasaki-betegséggel, a toxikus sokk szindrómával és a makrofágaktivációs szindrómával. A PIMS-betegek intenzív terápiás osztályon vagy intenzív terápiás háttérrel rendelkezo intézményben kezelendok, ahol biztosítottak a kardiológiai ellátás feltételei is. A szükséges immunterápia a klinikai prezentációtól függ. A jelen közleményben a szerzok a releváns nemzetközi irodalom áttekintését követoen ajánlást tesznek a PIMS diagnosztikai és terápiás algoritmusára. Orv Hetil. 2021; 162(17): 652-667. Summary. Pediatric inflammatory multisystem syndrome (PIMS) is a rare complication of SARS-CoV-2 infection in children. PIMS is a severe condition, involving two or more organ systems. The symptoms overlap with Kawasaki disease, toxic shock syndrome and macrophage activation syndrome. PIMS patients should be treated in an intensive care unit or in an institution with an intensive care background, where cardiological care is also provided. The required specific immunotherapy depends on the clinical presentation. In this paper, after reviewing the relevant international literature, the authors make a recommendation for the diagnostic and therapeutic algorithm for PIMS. Orv Hetil. 2021; 162(17): 652-667.


Assuntos
COVID-19 , Síndrome de Resposta Inflamatória Sistêmica , Algoritmos , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/terapia , COVID-19/virologia , Criança , Cuidados Críticos , Humanos , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/terapia , Síndrome de Resposta Inflamatória Sistêmica/virologia
9.
J Transl Med ; 18(1): 250, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571344

RESUMO

BACKGROUND: Refractory central nervous system (CNS) involvement is among the major causes of therapy failure in childhood acute leukemia. Applying contemporary diagnostic methods, CNS disease is often underdiagnosed. To explore more sensitive and less invasive CNS status indicators, we examined microRNA (miR) expressions and extracellular vesicle (EV) characteristics. METHODS: In an acute lymphoblastic leukemia (ALL) discovery cohort, 47 miRs were screened using Custom TaqMan Advanced Low-Density Array gene expression cards. As a validation step, a candidate miR family was further scrutinized with TaqMan Advanced miRNA Assays on serial cerebrospinal fluid (CSF), bone marrow (BM) and peripheral blood samples with different acute leukemia subtypes. Furthermore, small EV-rich fractions were isolated from CSF and the samples were processed for immunoelectron microscopy with anti-CD63 and anti-CD81 antibodies, simultaneously. RESULTS: Regarding the discovery study, principal component analysis identified the role of miR-181-family (miR-181a-5p, miR-181b-5p, miR-181c-5p) in clustering CNS-positive (CNS+) and CNS-negative (CNS‒) CSF samples. We were able to validate miR-181a expression differences: it was about 52 times higher in CSF samples of CNS+ ALL patients compared to CNS‒ cases (n = 8 vs. n = 10, ΔFC = 52.30, p = 1.5E-4), and CNS+ precursor B cell subgroup also had ninefold higher miR-181a levels in their BM (p = 0.04). The sensitivity of CSF miR-181a measurement in ALL highly exceeded those of conventional cytospin in the initial diagnosis of CNS leukemia (90% vs. 54.5%). Pellet resulting from ultracentrifugation of CNS+ CSF samples of ALL patients showed atypical CD63-/CD81- small EVs in high density by immunoelectron microscopy. CONCLUSIONS: After validating in extensive cohorts, quantification of miR-181a or a specific EV subtype might provide novel tools to monitor CNS disease course and further adjust CNS-directed therapy in pediatric ALL.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Biomarcadores , Sistema Nervoso Central , Criança , Humanos , Biópsia Líquida , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
Mod Pathol ; 33(5): 812-824, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31857684

RESUMO

Acute lymphoblastic leukemia is the most common pediatric cancer characterized by a heterogeneous genomic landscape with copy number aberrations occurring at various stages of pathogenesis, disease progression, and treatment resistance. In this study, disease-relevant copy number aberrations were profiled in bone marrow samples of 91 children with B- or T-cell precursor acute lymphoblastic leukemia using digital multiplex ligation-dependent probe amplification (digitalMLPATM). Whole chromosome gains and losses, subchromosomal copy number aberrations, as well as unbalanced alterations conferring intrachromosomal gene fusions were simultaneously identified with results available within 36 hours. Aberrations were observed in 96% of diagnostic patient samples, and increased numbers of copy number aberrations were detected at the time of relapse as compared with diagnosis. Comparative scrutiny of 24 matching diagnostic and relapse samples from 11 patients revealed three different patterns of clonal relationships with (i) one patient displaying identical copy number aberration profiles at diagnosis and relapse, (ii) six patients showing clonal evolution with all lesions detected at diagnosis being present at relapse, and (iii) four patients displaying conserved as well as lost or gained copy number aberrations at the time of relapse, suggestive of the presence of a common ancestral cell compartment giving rise to clinically manifest leukemia at different time points during the disease course. A newly introduced risk classifier combining cytogenetic data with digitalMLPATM-based copy number aberration profiles allowed for the determination of four genetic subgroups of B-cell precursor acute lymphoblastic leukemia with distinct event-free survival rates. DigitalMLPATM provides fast, robust, and highly optimized copy number aberration profiling for the genomic characterization of acute lymphoblastic leukemia samples, facilitates the decipherment of the clonal origin of relapse and provides highly relevant information for clinical prognosis assessment.


Assuntos
Perfilação da Expressão Gênica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos
11.
J Transl Med ; 17(1): 372, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727091

RESUMO

BACKGROUND: Treatment stratification based on bone marrow minimal residual disease (MRD) at set time points has resulted in considerably improved survival in pediatric acute lymphoblastic leukemia (ALL). Treatment response is assessed using bone marrow samples. MicroRNAs (miRs) easily traffic among fluid spaces and are more stable than most other RNA classes. We examined the role of circulating miRs as putative less invasive MRD biomarkers. METHODS: In an exploratory experiment, expression of 46 preselected miRs was studied in platelet-free blood plasma samples of 15 de novo, 5 relapsed ALL patients and 10 controls by Custom TaqMan Array Advanced MicroRNA Card. Based on their high expression in ALL compared to controls, and on the reduction observed along the induction therapy, four miRs were selected for further analyses: miR-128-3p, -181a-5p, -181b-5p and 222-3p. Their expression was measured by qPCR at 4 time points in 27 de novo ALL patients treated in the ALL IC-BFM 2009 study. RESULTS: The expression of all 4 miRs significantly decreased over the first week of therapy (miR-128-3p: log2 fold change - 2.86; adjusted p 3.6 × 10-7; miR-181b-5p: log2 fold change - 1.75; adjusted p 1.48 × 10-2; miR-181a-5p: log2 fold change -1.33; adjusted p 3.12 × 10-2; miR-222-3p: log2 fold change - 1.25; adjusted p 1.66 × 10-2). However, no significant further reduction in miR expression was found after the 8th day of therapy. Measured drop in expression of 2 miRs at day 8 strongly correlated with day 15 bone marrow flow cytometry MRD results (miR-128-3p: Pearson's r = 0.88, adjusted p = 2.71 × 10-4; miR-222-3p: r = 0.81, adjusted p = 2.99 × 10-3). CONCLUSION: In conclusion, these circulating miRs might act as biomarkers of residual leukemia. MiR-128-3p and miR-222-3p in blood predict day 15 flow cytometry MRD results 7 days earlier. Although, their sensitivity falls behind that of bone marrow flow cytometry MRD at day 15.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , MicroRNA Circulante/sangue , Neoplasia Residual/sangue , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Plaquetas/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico , Curva ROC , Fatores de Risco
12.
BMC Cancer ; 18(1): 704, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970035

RESUMO

BACKGROUND: The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. METHODS: Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989-2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. RESULTS: Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76-27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98-67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5-10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5-10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5-10 years after the diagnosis. CONCLUSIONS: Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy.


Assuntos
Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Teorema de Bayes , Neoplasias Ósseas/genética , Cardiotoxicidade , Criança , Pré-Escolar , Citocromo P-450 CYP3A/genética , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Osteossarcoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
13.
Orv Hetil ; 159(20): 786-797, 2018 May.
Artigo em Húngaro | MEDLINE | ID: mdl-29754509

RESUMO

Owing to clinical trials and improvement over the past few decades, the majority of children with acute lymphoblastic leukemia (ALL) survive by first-line chemotherapy and combat with the problems of returning to community. However, many patients may have severe acute or late therapeutic side effects, and the survival rate in some groups (e.g., patients with MLL rearrangements, hypodiploidy, IKZF1 mutation or early precursor T cell phenotype) is far behind the average. Innovative strategies in medical attendance provide better clinical outcomes for them: complete gene diagnostics, molecularly targeted anticancer treatment, immuno-oncology and immune cell therapy. The number of genes with identified alterations in leukemic lymphoblasts is over thirty and their pathobiologic role is only partly clear. There are known patient groups where the use of specific drugs is based on gene expression profiling (e.g., tyrosine kinase inhibitors in Philadelphia-like B-cell ALL). The continuous assessment of minimal residual disease became a routine due to the determination of a leukemia-associated immunophenotype by flow cytometry or a sensitive molecular marker by molecular genetics at diagnosis. Epitopes of cluster differentiation antigens on blast surface (primarily CD19, CD20 and CD22 on malignant B cells) can be attacked by monoclonal antibodies. Moreover, antitumor immunity can be strengthened utilizing either cell surface markers (bispecific T cell engagers, chimeric antigen receptor T cell therapy) or tumor-specific immune cells (immune checkpoint inhibitors). This review gives an insight into current knowledge in these innovative therapeutic directions. Orv Hetil. 2018; 159(20): 786-797.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA