Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Atherosclerosis ; 371: 1-13, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940535

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS: We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS: The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS: Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Apolipoproteínas E , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo , Transcriptoma
2.
Basic Res Cardiol ; 117(1): 61, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36383299

RESUMO

AIMS: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Selectina-P/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Leucócitos , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia Miocárdica/metabolismo
3.
Hamostaseologie ; 41(6): 443-446, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34942657

RESUMO

Clonal haematopoiesis of indeterminate potential (CHIP) represents a recently identified overlap between cancer and cardiovascular disease (CVD). CHIP develops as a result of certain acquired somatic mutations that predispose to leukaemia, but clinically even more prevalent, associate with increased risk for CVD and CVD-related death. Experimental studies suggest a causal role for CHIP aggravating inflammatory processes in CVD, and recent epidemiologic and genetic studies indicate that classical CVD risk factors may increase the risk of acquiring CHIP driver mutations, thus fuelling a vicious circle. The potential mechanism underlying the associative link between CHIP and CVD and mortality has been the focus of a few recent excellent experimental and observational studies which are summarized and discussed in this concise non-systematic review article. These data support a pathomechanistic view of a spiralling vicious circle in which CHIP aggravates the inflammatory immune response in CVD, and CVD-driven elevated haematopoietic activity promotes CHIP development.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/genética , Hematopoiese Clonal , Humanos , Mutação
4.
Mol Metab ; 53: 101250, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33991749

RESUMO

OBJECTIVE: Interferon regulatory factor (IRF) 5 is a transcription factor known for promoting M1 type macrophage polarization in vitro. Given the central role of inflammatory macrophages in promoting atherosclerotic plaque progression, we hypothesize that myeloid cell-specific deletion of IRF5 is protective against atherosclerosis. METHODS: Female Apoe-/-LysmCre/+Irf5fl/fl and Apoe-/-Irf5fl/fl mice were fed a high-cholesterol diet for three months. Atherosclerotic plaque size and compositions as well as inflammatory gene expression were analyzed. Mechanistically, IRF5-dependent bone marrow-derived macrophage cytokine profiles were tested under M1 and M2 polarizing conditions. Mixed bone marrow chimeras were generated to determine intrinsic IRF5-dependent effects on macrophage accumulation in atherosclerotic plaques. RESULTS: Myeloid cell-specific Irf5 deficiency blunted LPS/IFNγ-induced inflammatory gene expression in vitro and in the atherosclerotic aorta in vivo. While atherosclerotic lesion size was not reduced in myeloid cell-specific Irf5-deficient Apoe-/- mice, plaque composition was favorably altered, resembling a stable plaque phenotype with reduced macrophage and lipid contents, reduced inflammatory gene expression and increased collagen deposition alongside elevated Mertk and Tgfß expression. Irf5-deficient macrophages, when directly competing with wild type macrophages in the same mouse, were less prone to accumulate in atherosclerotic lesion, independent of monocyte recruitment. Irf5-deficient monocytes, when exposed to oxidized low density lipoprotein, were less likely to differentiate into macrophage foam cells, and Irf5-deficient macrophages proliferated less in the plaque. CONCLUSION: Our study provides genetic evidence that selectively altering macrophage polarization induces a stable plaque phenotype in mice.


Assuntos
Apolipoproteínas E/metabolismo , Fatores Reguladores de Interferon/metabolismo , Células Mieloides/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/deficiência , Feminino , Fatores Reguladores de Interferon/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia
5.
Curr Opin Lipidol ; 32(4): 258-264, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34054106

RESUMO

PURPOSE OF REVIEW: Macrophages are key protagonists of atherosclerotic plaque development and hence represent targets of therapeutic intervention. Statins are the most potent widely used atheroprotective drugs. Therefore, whether and how statins influence atheromatous plaque macrophages has remained at the center of cardiovascular research for decades. RECENT FINDINGS: Because statins are capable of regulating macrophage functions in cell culture, largely independent of their cholesterol-lowering effect, it was assumed that these pleiotropic effects operate in vivo as well. Recent experimental data, in line with clinical observations, indicate, however, that statins do not interact with macrophages in atherosclerotic plaques, directly, and instead control their functions and assembly indirectly via changes to circulating lipid levels and endothelial activation. SUMMARY: Statin-mediated lipid lowering induces plaque regression which is characterized by a decline in plaque macrophage content. Understanding how statins provoke this protective phenotype may inspire conceptually new therapeutic approaches in cardiovascular medicine.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Placa Aterosclerótica/tratamento farmacológico
6.
Basic Res Cardiol ; 115(6): 78, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33296022

RESUMO

Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.


Assuntos
Aterosclerose/terapia , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica , Animais , Apolipoproteína E3/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA