Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Med Virol ; 96(1): e29348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180275

RESUMO

Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , DNA Viral/genética , Neoplasias Hepáticas/genética , Hepatócitos , Mutação , Antivirais/uso terapêutico
2.
Infect Immun ; 92(3): e0052923, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289123

RESUMO

The causative agent of Lyme disease (LD), Borreliella burgdorferi, binds factor H (FH) and other complement regulatory proteins to its surface. B. burgdorferi B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspEBBN38, OspEBBL39, and OspEBBP38. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious B. burgdorferi clonal populations recovered from dogs. FHBP production was assessed in cultivated spirochetes and by antibody responses in naturally infected humans, dogs, and eastern coyotes (wild canids). FH binding specificity and sensitivity to dog and human serum were also assessed and compared. No correlation was observed between the production of individual FHBPs and FH binding with serum resistance, and CspA was determined to not be produced in animals. Notably, one or more clones isolated from dogs lacked CspZ or the OspE proteins (a finding confirmed by genome sequence determination) and did not bind FH derived from canines. The data presented do not support a correlation between FH binding and the production of individual FHBPs with serum resistance and infectivity. In addition, the limited number and polymorphic nature of cp32s in B. burgdorferi clone DRI85A that were identified through genome sequencing suggest no strict requirement for a defined set of these replicons for infectivity. This study reveals that the immune evasion mechanisms employed by B. burgdorferi are diverse, complex, and yet to be fully defined.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Animais , Cães , Fator H do Complemento , Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Proteínas do Sistema Complemento/metabolismo , Mamíferos , Antígenos de Bactérias
3.
Int J Pediatr Otorhinolaryngol ; 176: 111798, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041988

RESUMO

OBJECTIVE: To review and highlight progress in otitis media (OM) research in the areas of immunology, inflammation, environmental influences and host-pathogen responses from 2019 to 2023. Opportunities for innovative future research were also identified. DATA SOURCES: PubMed database of the National Library of Medicine. REVIEW METHODS: Key topics were assigned to each panel member for detailed review. Search of the literature was from June 2019 until February 2023. Draft reviews were collated, circulated, and discussed among panel members at the 22nd International Symposium on Recent Advances in Otitis Media in June 2023. The final manuscript was prepared and approved by all the panel members. CONCLUSIONS: Important advances were identified in: environmental influences that enhance OM susceptibility; polymicrobial middle ear (ME) infections; the role of adaptive immunity defects in otitis-proneness; additional genes linked to OM; leukocyte contributions to OM pathogenesis and recovery; and novel interventions in OM based on host responses to infection. Innovative areas of research included: identification of novel bacterial genes and pathways important for OM persistence, bacterial adaptations and evolution that enhance chronicity; animal and human ME gene expression, including at the single-cell level; and Sars-CoV-2 infection of the ME and Eustachian tube.


Assuntos
Tuba Auditiva , Otite Média , Estados Unidos , Animais , Humanos , Otite Média/microbiologia , Bactérias , Inflamação
4.
J Infect Dis ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066574

RESUMO

BACKGROUND: The critical issues of sustained memory immunity following ebolavirus disease among long-term survivors (EVD) are still unclear. METHODS: Here, we examine virus-specific immune and inflammatory responses in 12 Sudan virus (SUDV) long-term survivors from Uganda's 2000-1 Gulu outbreak, 15 years after recovery following in vitro challenge. Total RNA from isolated SUDV-stimulated and unstimulated PBMCs was extracted and analyzed. Matched serum samples were also collected to determine SUDV IgG levels and functionality. RESULTS: We detected persistent humoral (58%, 7 of 12) and cellular (33%, 4 of 12) immune responses in SUDV long-term survivors and identified critical molecular mechanisms of innate and adaptive immunity. Gene expression in immune pathways, the IFN signaling system, antiviral defense response, and activation and regulation of T- and B-cell responses were observed. SUDV long-term survivors also maintained robust virus-specific IgG antibodies capable of polyfunctional responses, including neutralizing and innate Fc effector functions. CONCLUSIONS: Data integration identified significant correlations among humoral and cellular immune responses and pinpointed a specific innate and adaptive gene expression signature associated with long-lasting immunity. This could help identify natural and vaccine correlates of protection against ebolavirus disease.

5.
Genet Test Mol Biomarkers ; 27(12): 361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156908
6.
Front Cell Infect Microbiol ; 13: 1123228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780846

RESUMO

Background: Over the last few decades, a growing body of evidence has suggested a role for various infectious agents in Alzheimer's disease (AD) pathogenesis. Despite diverse pathogens (virus, bacteria, fungi) being detected in AD subjects' brains, research has focused on individual pathogens and only a few studies investigated the hypothesis of a bacterial brain microbiome. We profiled the bacterial communities present in non-demented controls and AD subjects' brains. Results: We obtained postmortem samples from the brains of 32 individual subjects, comprising 16 AD and 16 control age-matched subjects with a total of 130 samples from the frontal and temporal lobes and the entorhinal cortex. We used full-length 16S rRNA gene amplification with Pacific Biosciences sequencing technology to identify bacteria. We detected bacteria in the brains of both cohorts with the principal bacteria comprising Cutibacterium acnes (formerly Propionibacterium acnes) and two species each of Acinetobacter and Comamonas genera. We used a hierarchical Bayesian method to detect differences in relative abundance among AD and control groups. Because of large abundance variances, we also employed a new analysis approach based on the Latent Dirichlet Allocation algorithm, used in computational linguistics. This allowed us to identify five sample classes, each revealing a different microbiota. Assuming that samples represented infections that began at different times, we ordered these classes in time, finding that the last class exclusively explained the existence or non-existence of AD. Conclusions: The AD-related pathogenicity of the brain microbiome seems to be based on a complex polymicrobial dynamic. The time ordering revealed a rise and fall of the abundance of C. acnes with pathogenicity occurring for an off-peak abundance level in association with at least one other bacterium from a set of genera that included Methylobacterium, Bacillus, Caulobacter, Delftia, and Variovorax. C. acnes may also be involved with outcompeting the Comamonas species, which were strongly associated with non-demented brain microbiota, whose early destruction could be the first stage of disease. Our results are also consistent with a leaky blood-brain barrier or lymphatic network that allows bacteria, viruses, fungi, or other pathogens to enter the brain.


Assuntos
Acne Vulgar , Doença de Alzheimer , Microbiota , Humanos , Doença de Alzheimer/microbiologia , RNA Ribossômico 16S/genética , Teorema de Bayes , Bactérias/genética , Propionibacterium acnes , Encéfalo
7.
Alzheimers Dement ; 19(11): 5209-5231, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283269

RESUMO

Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Consenso , Disfunção Cognitiva/patologia , Encéfalo/patologia
8.
Microorganisms ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375017

RESUMO

Biofouling is a major problem in all natural and artificial settings where solid surfaces meet liquids in the presence of living microorganisms. Microbes attach to the surface and form a multidimensional slime that protects them from unfavorable environments. These structures, known as biofilms, are detrimental and very hard to remove. Here, we used SMART magnetic fluids [ferrofluids (FFs), magnetorheological fluids (MRFs), and ferrogels (FGs) containing iron oxide nano/microparticles] and magnetic fields to remove bacterial biofilms from culture tubes, glass slides, multiwell plates, flow cells, and catheters. We compared the ability of different SMART fluids to remove biofilms and found that commercially available, as well as homemade, FFs, MRFs, and FGs can successfully remove biofilm more efficiently than traditional mechanical methods, especially from textured surfaces. In tested conditions, SMARTFs reduced bacterial biofilms by five orders of magnitude. The ability to remove biofilm increased with the amount of magnetic particles; therefore, MRFs, FG, and homemade FFs with high amounts of iron oxide were the most efficient. We showed also that SMART fluid deposition can protect a surface from bacterial attachment and biofilm formation. Possible applications of these technologies are discussed.

9.
ACS Appl Bio Mater ; 6(1): 238-245, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595712

RESUMO

Since the onset of the SARS-CoV-2 pandemic, the world has witnessed over 617 million confirmed cases and more than 6.54 million confirmed deaths, but the actual totals are likely much higher. The virus has mutated at a significantly faster rate than initially projected, and positive cases continue to surge with the emergence of ever more transmissible variants. According to the CDC, and at the time of this manuscript submission, more than 77% of all current US cases are a result of the B.5 (omicron). The continued emergence of highly transmissible variants makes clear the need for more effective methods of mitigating disease spread. Herein, we have developed an antimicrobial fabric capable of destroying a myriad of microbes including betacoronaviruses. We have demonstrated the capability of this highly porous and nontoxic metal organic framework (MOF), γ-CD-MOF-1, to serve as a host for varied-length benzalkonium chlorides (BACs; active ingredient in Lysol). Molecular docking simulations predicted a binding affinity of up to -4.12 kcal·mol-1, which is comparable to that of other reported guest molecules for this MOF. Similar Raman spectra and powder X-ray diffraction patterns between the unloaded and loaded MOFs, accompanied by a decrease in the Brunauer-Emmett-Teller surface area from 616.20 and 155.55 m2 g-1 respectively, corroborate the suggested potential for pore occupation with BAC. The MOF was grown on polypropylene fabric, exposed to a BAC-loading bath, washed to remove excess BAC from the external surface, and evaluated for its microbicidal activity against various bacterial and viral classes. Significant antimicrobial character was observed against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, bacteriophage, and betacoronavirus. This study shows that a common mask material (polypropylene) can be coated with BAC-loaded γ-CD-MOF-1 while maintaining the guest molecule's antimicrobial effects.


Assuntos
Anti-Infecciosos , COVID-19 , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Simulação de Acoplamento Molecular , Tensoativos , Polipropilenos , SARS-CoV-2
10.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140772

RESUMO

The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Borrelia burgdorferi/genética , Genoma Bacteriano , Genômica/métodos , Humanos , Doença de Lyme/genética , Doença de Lyme/microbiologia , Filogenia
11.
Genet Test Mol Biomarkers ; 26(7-8): 375-381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36027038

RESUMO

Study Design: Prospective observational cohort study. Objective: To determine whether biofilms exist on spinal instrumentation recovered during revision surgery in which microbial cultures were negative. Background: Biofilm bacteria are extremely difficult to detect by conventional culture methods used in the standard hospital setting. Chronic infections in which bacteria form biofilms have been demonstrated to slow healing and prevent bony fusion. These slime encased microbial communities serve to isolate the bacteria from the body's immune responses, while simultaneously providing metabolic resistance to antimicrobial therapy. Methods: Traditional debridement wound cultures were taken from each specimen and sent for microbiological analyses. Bacterial DNA testing was performed using polymerase chain reaction (PCR) electrospray ionization-mass spectrometry (ESI-MS). Based on the PCR/ESI-MS results, specific crossed immune electrophoresis was used to detect the bacterial species within biofilms observed on the removed instrumentation. In addition, fluorescent in situ hybridization (FISH) probes corresponding to the bacterial species identified by PCR/ESI-MS were used with confocal microscopy to visualize and confirm the infecting bacteria. Results: Fifteen patients presented for surgical revision of thoracolumbar spinal implantation: four for clinical suspicion of infection, six for adjacent segment disease (ASD), one with ASD and pseudoarthrosis (PA), three with PA, and one for pain. Infections were confirmed with PCR/ESI-MS for all four patients who presented with clinical infection, and for five of the patients for whom infection was not clinically suspected. Of the presumed non-infected implants, 50% demonstrated the presence of infectious biofilms. Half of the revisions due to pseudoarthrosis were shown to harbour biofilms. The revisions that were performed for pain demonstrated robust biofilms but did not grow bacteria on traditional culture media. Conclusions: Culture is inadequate as a diagnostic modality to detect indolent/subclinical biofilm infections of spinal instrumentation. The PCR/ESI-MS results for bacterial detection were confirmed using species-specific microscopic techniques for both bacterial nucleic acids and antigens. Biofilms may contribute to pseudoarthrosis and back pain in postoperative wounds otherwise considered sterile.


Assuntos
Pseudoartrose , Fusão Vertebral , Bactérias , Biofilmes , Humanos , Hibridização in Situ Fluorescente , Dor , Estudos Prospectivos
12.
Genet Test Mol Biomarkers ; 26(5): 251-252, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35638912
13.
Can Urol Assoc J ; 16(9): E448-E454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35426787

RESUMO

INTRODUCTION: To understand the role of the urinary microbiome in disease states and interpret non-culture-based diagnostic urine testing of midstream urine specimens, we must have a better understanding of the urinary microbiome in asymptomatic, healthy individuals. We examined the impact of gender, age, and menopausal status on the healthy human urinary microbiome in asymptomatic control subjects enrolled in the multi-institution National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Multidisciplinary Approach to the Study of Chronic Pelvic Pain Network (MAPP) study. METHODS: Asymptomatic, healthy controls, recruited to be ageand sex-matched to patients in the Trans-MAPP Epidemiology and Phenotyping Study, provided midstream urine collection for polymerase chain reaction (PCR)-electrospray ionization mass spectrometry identification of urinary microbiota. The microbiomes of male and female participants were described and analyzed for differences in composition and diversity at the species and genus level by sex, age, and, in females, by menopausal status. RESULTS: Sixty-six total species were detected with a mean of 1.2 species (standard deviation [SD] 1.1) per male (n=97; mean age=43) and 2.3 (SD 1.3) per female (n=110, mean age=38) in asymptomatic, healthy controls. Species and genera diversity analyses showed significantly greater richness and diversity in females. With regard to species, Bifidobacterium subtile, Lactobacillus crispatus, and Lactobacillus johnsonii were more predominant in females. The genera Bifidobacterium, Staphylococcus, Lactobacillus, and Corynebacterium were more predominant in females, while for males the most prevalent organisms included Staphylococcus and Propionibacterium; only Propionibacterium approached a significant difference between genders. No significant difference in the presence and/or diversity of micro-organisms with menopausal status could be observed. Sex-specific age trends, particularly diversity, were larger for females than males. CONCLUSIONS: These results suggest the urinary microbiome of healthy, asymptomatic subjects differed between genders and age in females, but not menopausal status. Gender differences may be attributable to the detection of urethral/vaginal organisms in females and prostate organisms in males. These findings will better allow us to interpret the results of microbiome reports in the midstream urine specimens of patients with urinary symptoms.

14.
Genet Test Mol Biomarkers ; 26(2): 70-80, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35225678

RESUMO

Objectives: The primary aims of this study were to determine if any correlation exists in cases of fracture fixation among: (1) bacterial profiles recovered from the instrumentation and adjacent tissues; (2) the type of orthopedic injury; and (3) the clinical outcome-union versus nonunion. A secondary goal was to compare culture and molecular diagnostics for identifying the bacterial species present following fracture fixation. Design: Single-institution, prospective case-control cohort study. Setting: Single level 1 trauma center. Patients: Forty-nine bony nonunion cases undergoing revision internal fixation and 45 healed fracture controls undergoing removal of hardware. Intervention: Bacterial infection was detected by standard microbial culture methods and by a pan-eubacterial domain, molecular diagnostic (MDx) assay. Confirmation of culture and MDx results was achieved with bacterial ribosomal 16S rRNA fluorescence in situ hybridization (FISH) to visualize bacterial biofilms. Main Outcome Measurements: MDx and microbial culture methods results were the primary study outcomes. Results: Ninety-four percent of the nonunion cohort and 93% of the union cohort had bacteria detected by the MDx. Seventy-eight percent of the nonunion cases and 69% of the controls were culture negative, but MDx positive. Although no significant differences in bacterial composition were observed between the cases and controls, differences were observed when cases were divided by comorbidities. Conclusion: The MDx is more sensitive than microbial culture in detecting bacterial presence. The lack of significantly different findings with regard to bacterial profile identified between the cases and controls suggests that host factors and environmental conditions are largely responsible for determining if bony union will occur. Level of Evidence: Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Fraturas não Consolidadas , Bactérias/genética , Biofilmes , Estudos de Casos e Controles , Fraturas não Consolidadas/diagnóstico , Fraturas não Consolidadas/microbiologia , Fraturas não Consolidadas/cirurgia , Humanos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Resultado do Tratamento
15.
BJU Int ; 129(1): 104-112, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143561

RESUMO

OBJECTIVE: To undertake the first comprehensive evaluation of the urinary microbiota associated with Hunner lesion (HL) interstitial cystitis/bladder pain syndrome (IC/BPS). Despite no previous identification of a distinct IC/BPS microbial urotype, HL IC/BPS, an inflammatory subtype of IC/BPS, was hypothesized most likely to be associated with a specific bacterial species or microbial pattern. PARTICIPANTS AND METHODS: The bacterial microbiota of midstream urine specimens from HL IC/BPS and age- and gender-matched IC/BPS patients without HL (non-HL IC/BPS) were examined using the pan-bacterial domain clinical-level molecular diagnostic Pacific Biosciences full-length 16S gene sequencing protocol, informatics pipeline and database. We characterized the differential presence, abundances, and diversity of species, as well as gender-specific differences between and among HL and non-HL IC/BPS patients. RESULTS: A total of 59 patients with IC/BPS were enrolled (29 HL, 30 non-HL; 43 women, 16 men) from a single centre and the microbiota in midstream urine specimens was available for comparison. The species abundance differentiation between the HL and non-HL groups (12 species) was not significantly different after Bonferroni adjustments for multiple comparisons. Similarly, the nine differentiating species noted between female HL and non-HL patients were not significantly different after similar statistical correction. However, four species abundances (out of the 10 species differences identified prior to correction) remained significantly different between male HL and non-HL subjects: Negativicoccus succinivorans, Porphyromonas somerae, Mobiluncus curtisii and Corynebacterium renale. Shannon diversity metrics showed significantly higher diversity among HL male patients than HL female patients (P = 0.045), but no significant diversity differences between HL and non-HL patients overall. CONCLUSIONS: We were not able to identify a unique pathogenic urinary microbiota that differentiates all HL from all non-HL IC/BPS. It is likely that the male-specific differences resulted from colonization/contamination remote from the bladder. We were not able to show that bacteria play an important role in patients with HL IC/BPS.


Assuntos
Bactérias/isolamento & purificação , Cistite Intersticial/microbiologia , DNA Bacteriano/análise , Microbiota , Urina/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Corynebacterium/isolamento & purificação , Cistite Intersticial/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mobiluncus/isolamento & purificação , Porphyromonas/isolamento & purificação , Fatores Sexuais , Veillonellaceae/isolamento & purificação
16.
Front Cell Infect Microbiol ; 11: 744742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765566

RESUMO

In our community-based prospective cohort study in young children, we observed a significant increase in pneumococcal serotype 35B nasopharyngeal (NP) commensal colonization during the 2011-2014 timeframe, but these strains were not associated with disease. Beginning in 2015 and continuing through to the present, the serotype 35B virulence changed, and it became the dominant bacteria isolated and associated with pneumococcal acute otitis-media (AOM) in our cohort. We performed comparative analyses of 250 35B isolates obtained from 140 children collected between 2006 and 2019. Changes in prevalence, clonal-complex composition, and antibiotic resistance were analyzed. Seventy-two (29%) of 35B isolates underwent whole-genome sequencing to investigate genomic changes associated with the shift in virulence that resulted in increased rates of 35B-associated AOM disease. 35B strains that were commensals and AOM disease-causing were mainly associated with sequence type (ST) 558. Antibiotic concentrations of ß-lactams and ofloxacin necessary to inhibit growth of 35B strains rose significantly (2006-2019) (p<0.005). However, only isolates from the 35B/ST558 showed significant increases in MIC50 of penicillin and ofloxacin between the years 2006-2014 and 2015-2019 (p=0.007 and p<0.0001). One hundred thirty-eight SNPs located in 34 different genes were significantly associated with post-2015 strains. SNPs were found in nrdG (metal binding, 10%); metP and metN (ABC transporter, 9%); corA (Mg2+ transporter, 6%); priA (DNA replication, 5%); and on the enzymic gene ldcB (LD-carboxypeptidase, 3%). Pneumococcal serotype 35B strains was a common NP commensal during 2010-2014. In 2015, a shift in increasing number of AOM cases occurred in young children caused by 35B, that was associated with changes in genetic composition and antibiotic susceptibility.


Assuntos
Otite Média , Infecções Pneumocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Humanos , Lactente , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas , Estudos Prospectivos , Sorogrupo , Sorotipagem , Streptococcus pneumoniae/genética
18.
Genet Test Mol Biomarkers ; 25(8): 551-562, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34406842

RESUMO

Background and Aims: Outbreaks of severe and chronic tick-borne diseases (TBDs) are on the rise. This is through the transmission of infectious disease agents to humans during tick feeding. The transmission rate and extent of microbial exchange, however, vary based on the tick microbiome composition. While select microbes are determined to be members of the normal tick microbiome and others are clearly recognized mammalian and/or avian pathogens, the status of many other members of the tick microbiota with respect to human and alternate host pathogenesis remains unclear. Moreover, the species-level 16S microbiome of prominent TBD vectors, including Ixodes pacificus, have not been extensively studied. To elucidate the I. pacificus microbiome composition, we performed a pan-domain species-specific characterization of the bacterial microbiome on adult I. pacificus ticks collected from two regional parks within Western California. Our methods provide for characterizing nuances within cohort microbiomes and their relationships to geo-locale of origin, surrounding fauna, and prevalences of known and suspected pathogens in relation to current TBD epidemiological zones. Methods: Ninety-two adult I. pacificus bacterial microbiomes were characterized using a high-fidelity, pan-domain, species-specific, full-length 16S rRNA amplification method using circular consensus sequencing performed on the Pacific Biosciences Sequel platform. Data analyses were performed with the MCSMRT data analysis package and database. Results: The species-specific I. pacificus microbiome composition illustrates a complex assortment of microflora, including over 900 eubacterial species with high taxonomic diversity, which was revealed to vary by sex and geo-locale, though the use of full-length 16S gene sequencing. The TBD-associated pathogens, such as Borrelia burgdorferi, Anaplasma phagocytophilum, and Rickettsia monacensis, were identified along with a host of bacteria previously unassociated with ticks. Conclusion: Species-level taxonomic classification of the I. pacificus microbiome revealed that full-length bacterial 16S gene sequencing is required for the granularity to elucidate the microbial diversity within and among ticks based on geo-locale.


Assuntos
Ixodes/genética , Ixodes/microbiologia , Microbiota/genética , Animais , California , Ixodes/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Doenças Transmitidas por Carrapatos/genética
19.
Front Microbiol ; 12: 646303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122361

RESUMO

Recent advances in 3D printing have led to a rise in the use of 3D printed materials in prosthetics and external medical devices. These devices, while inexpensive, have not been adequately studied for their ability to resist biofouling and biofilm buildup. Bacterial biofilms are a major cause of biofouling in the medical field and, therefore, hospital-acquired, and medical device infections. These surface-attached bacteria are highly recalcitrant to conventional antimicrobial agents and result in chronic infections. During the COVID-19 pandemic, the U.S. Food and Drug Administration and medical officials have considered 3D printed medical devices as alternatives to conventional devices, due to manufacturing shortages. This abundant use of 3D printed devices in the medical fields warrants studies to assess the ability of different microorganisms to attach and colonize to such surfaces. In this study, we describe methods to determine bacterial biofouling and biofilm formation on 3D printed materials. We explored the biofilm-forming ability of multiple opportunistic pathogens commonly found on the human body including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus to colonize eight commonly used polylactic acid (PLA) polymers. Biofilm quantification, surface topography, digital optical microscopy, and 3D projections were employed to better understand the bacterial attachment to 3D printed surfaces. We found that biofilm formation depends on surface structure, hydrophobicity, and that there was a wide range of antimicrobial properties among the tested polymers. We compared our tested materials with commercially available antimicrobial PLA polymers.

20.
mBio ; 12(3): e0078921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154422

RESUMO

Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation. IMPORTANCE Human-adapted bacterial pathogens have evolved specific mechanisms to colonize their host niche. Phase variation is a contingency strategy to allow adaptation to changing conditions, as phase-variable bacterial loci rapidly and reversibly switch their expression. Several NTHi adhesins are phase variable. These adhesins are required for colonization but also immunogenic, in such a way that bacteria with lower adhesin levels are better equipped to survive an immune response, making their contribution to natural infections unclear. We show here that the major NTHi adhesin HMW1A displays allelic variation, which can drive a phase-variable epithelial hyperinvasion phenotype. Over time, hmw1A phase variation lowers adhesin expression, which controls an NTHi lifestyle switch from high epithelial invasiveness to lower invasion and higher biofilm formation. This reversible loss of function aligns with the previously stated notion that epithelial infection is essential for NTHi infection establishment, but once established, persistence favors gene inactivation, in this case facilitating biofilm growth.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Variação Genética , Genoma Bacteriano , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Adaptação Fisiológica/genética , Adesinas Bacterianas/classificação , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Biofilmes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA