Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 179: 114027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342547

RESUMO

Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.


Assuntos
Ácido Cítrico , Malatos , Oenococcus , Vinho , Fermentação , Vinho/análise , Açúcares , Concentração de Íons de Hidrogênio
2.
Res Microbiol ; 174(5): 104048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893970

RESUMO

Oenococcus oeni is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the O. oeni ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects mae, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.


Assuntos
Ácido Cítrico , Vinho , Malatos/análise , Vinho/análise , Vinho/microbiologia , Fermentação , Citratos
3.
Front Microbiol ; 14: 1283220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249489

RESUMO

Lactic acid bacteria (LAB) are Gram positive bacteria frequently used in the food industry for fermentation, mainly transformation of carbohydrates into lactic acid. In addition, these bacteria also have the capacity to metabolize citrate, an organic acid commonly found in food products. Its fermentation leads to the production of 4-carbon compounds such as diacetyl, resulting in a buttery flavor desired in dairy products. Citrate metabolism is known to have several beneficial effects on LAB physiology. Nevertheless, a controversial effect of citrate has been described on the acid tolerance of the wine bacterium Oenococcus oeni. This observation raises questions about the effect of citrate on the capacity of O. oeni to conduct malolactic fermentation in highly acidic wines. This review aims to summarize the current understanding of citrate metabolism in LAB, with a focus on the wine bacterium O. oeni. Metabolism with the related enzymes is detailed, as are the involved genes organized in cit loci. The known systems of cit locus expression regulation are also described. Finally, the beneficial effects of citrate catabolism on LAB physiology are reported and the negative impact observed in O. oeni is discussed.

4.
Microorganisms ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35456831

RESUMO

Integrating fluorescent genes including eGFP in the yeast genome is common practice for various applications, including cell visualization and population monitoring. The transformation of a commercial S. cerevisiae strain by integrating a cassette including a gene encoding an EGFP protein in the HO gene was carried out using CRISPR-Cas9 technology. Although this type of integration is often used and described as neutral at the phenotypic level of the cell, we have highlighted that under alcoholic fermentation (in a Chardonnay must), it has an impact on the exometabolome. We observed 41 and 82 unique biomarkers for the S3 and S3GFP strains, respectively, as well as 28 biomarkers whose concentrations varied significantly between the wild-type and the modified strains. These biomarkers were mainly found to correspond to peptides. Despite similar phenotypic growth and fermentation parameters, high-resolution mass spectrometry allowed us to demonstrate, for the first time, that the peptidome is modified when integrating this cassette in the HO gene.

5.
Front Microbiol ; 13: 1032842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845971

RESUMO

Yeast co-inoculations in winemaking are often studied in the framework of modulating the aromatic profiles of wines. Our study aimed to investigate the impact of three cocultures and corresponding pure cultures of Saccharomyces cerevisiae on the chemical composition and the sensory profile of Chardonnay wine. Coculture makes it possible to obtain completely new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. Esters, fatty acids and phenol families were identified as affected. The sensory profiles and metabolome of the cocultures, corresponding pure cultures and associated wine blends from both pure cultures were found to be different. The coculture did not turn out to be the addition of the two pure culture wines, indicating the impact of interaction. High resolution mass spectrometry revealed thousands of cocultures biomarkers. The metabolic pathways involved in these wine composition changes were highlighted, most of them belonging to nitrogen metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA