Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 13: 898819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928825

RESUMO

Molecular mechanisms underlying auto-antibody-induced acantholysis in pemphigus vulgaris are subject of current research to date. To decipher the discrepancy between ubiquitous antibody binding to the epidermal desmosomes, but discontinuous disease manifestation, we were able to identify Ultraviolet A (UVA) as a cofactor for acantholysis. UVA induces interleukin (IL)-1 secretion in keratinocytes, mirroring innate immune system activation. In an in vitro keratinocyte dissociation assay increased fragmentation was observed when UVA was added to anti-Desmoglein 3 Immunoglobulins (anti-Dsg3 IgG). These results were confirmed in skin explants where UVA enhanced anti-Dsg3-mediated loss of epidermal adhesion. The UVA-mediated effect was blocked in vitro by the pan-caspase-inhibitor zVAD-fmk. Thus, we introduce UVA as a caspase-dependent exogenous cofactor for acantholysis which suggests that local innate immune responses largely contribute to overt clinical blister formation upon autoantibody binding to epidermal cells in pemphigus vulgaris.


Assuntos
Pênfigo , Acantólise/metabolismo , Caspases , Humanos , Imunidade Inata , Imunoglobulina G
2.
Front Immunol ; 13: 884248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844545

RESUMO

The severe autoimmune blistering disease Pemphigus vulgaris (PV) is mainly caused by autoantibodies (IgG) against desmoglein (Dsg) 3 and Dsg1. The mechanisms leading to the development of blisters are not fully understood, but intracellular signaling seems to play an important role. Sheddases ADAM10 and ADAM17 are involved in the turnover of the desmosomal cadherin Dsg2 and ADAM10 has been shown to contribute to acantholysis in a murine pemphigus model. In the present study, we further examined the role of ADAM10 and ADAM17 both in keratinocyte adhesion and in the pathogenesis of PV. First, we found that inhibition of ADAM10 enhanced adhesion of primary human keratinocytes but not of immortalized keratinocytes. In dissociation assays, inhibition of ADAM10 shifted keratinocyte adhesion towards a hyperadhesive state. However, ADAM inhibition did neither modulate protein levels of Dsg1 and Dsg3 nor activation of EGFR at Y1068 and Y845. In primary human keratinocytes, inhibition of ADAM10, but not ADAM17, reduced loss of cell adhesion and fragmentation of Dsg1 and Dsg3 immunostaining in response to a PV1-IgG from a mucocutaneous PV patient. Similarly, inhibition of ADAM10 in dissociation assay decreased fragmentation of primary keratinocytes induced by a monoclonal antibody against Dsg3 and by PV-IgG from two other patients both suffering from mucosal PV. However, such protective effect was not observed in both cultured cells and ex vivo disease models, when another mucocutaneous PV4-IgG containing more Dsg1 autoantibodies was used. Taken together, ADAM10 modulates both hyperadhesion and PV-IgG-induced loss of cell adhesion dependent on the autoantibody profile.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Queratinócitos , Pênfigo , Proteína ADAM10/imunologia , Proteína ADAM17/imunologia , Secretases da Proteína Precursora do Amiloide , Animais , Autoanticorpos/imunologia , Adesão Celular/imunologia , Desmogleína 1/imunologia , Desmogleína 3/imunologia , Humanos , Imunoglobulina G/imunologia , Queratinócitos/imunologia , Queratinócitos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Pênfigo/imunologia , Pênfigo/patologia
3.
Vaccines (Basel) ; 10(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35214667

RESUMO

Pemphigus vulgaris (PV) is a chronic, life-altering autoimmune disease due to the production of anti-desmoglein antibodies causing the loss of cell-cell adhesion in keratinocytes (acantholysis) and blister formation in both skin and mucous membranes. The dispase-based keratinocyte dissociation assay (DDA) is the method of choice to examine the pathogenic effect of antibodies and additional co-stimuli on cell adhesion in vitro. Despite its widespread use, there is a high variability of experimental conditions, leading to inconsistent results. In this paper, we identify and discuss pitfalls in the application of DDA, including generation of a monolayer with optimized density, appropriate culturing conditions to obtain said monolayer, application of mechanical stress in a standardized manner, and performing consistent data processing. Importantly, we describe a detailed protocol for a successful and reliable DDA and the respective ideal conditions for three different types of human keratinocytes: (1) primary keratinocytes, (2) the HaCaT spontaneously immortalized keratinocyte cell line, and (3) the recently characterized HaSKpw spontaneously immortalized keratinocyte cell line. Our study provides detailed protocols which guarantee intra- and inter-experimental comparability of DDA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA