Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Rep ; 14(1): 15240, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956386

RESUMO

Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings that serve as protective coats for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.


Assuntos
Copépodes , Partículas de Ribonucleoproteínas em Forma de Abóbada , Animais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Copépodes/metabolismo , Salmo salar/parasitologia , Salmo salar/metabolismo , Feminino , Filogenia , Sequência de Aminoácidos
2.
Fish Shellfish Immunol ; 138: 108835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236552

RESUMO

Atlantic salmon (Salmo salar) are highly susceptible to infestations with the ectoparasite Lepeophtheirus salmonis, the salmon louse. Infestations elicit an immune response in the fish, but the response does not lead to parasite clearance, nor does it protect against subsequent infestations. It is, however, not known why the immune response is not adequate, possibly because the local response directly underneath the louse has been poorly evaluated. The present study describes the transcriptomic response by RNA sequencing of skin at the site of copepodid attachment. Analysing differentially expressed genes, 2864 were higher and 1357 were lower expressed at the louse attachment site compared to uninfested sites in the louse infested fish, while gene expression at uninfested sites were similar to uninfested control fish. The transcriptional patterns of selected immune genes were further detailed in three skin compartments/types: Whole skin, scales only and fin tissue. The elevation of pro-inflammatory cytokines and immune cell marker transcripts observed in whole skin and scale samples were not induced in fin, and a higher cytokine transcript level in scale samples suggest it can be used as a nonlethal sampling method to enhance selective breeding trials. Furthermore, the immune response was followed in both skin and anterior kidney as the infestation developed. Here, newly moulted preadult 1 stage lice induced a higher immune response than chalimi and adult lice. Overall, infestation with salmon louse induce a modest but early immune response with an elevation of mainly innate immune transcripts, with the response primarily localized to the site of attachment.


Assuntos
Copépodes , Doenças dos Peixes , Salmo salar , Animais , Transcriptoma , Salmo salar/genética , Salmo salar/metabolismo , Pele , Imunidade/genética , Citocinas/genética
3.
Exp Parasitol ; 248: 108511, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36921884

RESUMO

Lepeophtheirus salmonis and Caligus elongatus are two parasitic copepod species posing a significant threat to salmonid aquaculture. Consequently, several gene expression studies are executed each year to gain new knowledge and treatment strategies. Though, to enable accurate gene expression measurements by quantitative real time PCR, stable reference genes are needed. Previous studies have mainly focused on a few genes selected based on their function as housekeeping genes, as these are often stably expressed in various cells and tissues. In the present study, however, RNA-sequencing data from 127 L. salmonis samples from different life stages and diverse environmental conditions were used to identify new candidate reference genes displaying low variation. From this, six genes were selected, and the stability validated by qPCR on samples from different life stages. Since neither a genome nor comprehensive RNA sequencing data are available for C. elongatus, homologous genes to those identified for L. salmonis were identified within a C. elongatus transcriptome assembly and validated by qPCR in different life stages. Overall, the genes eukaryotic translation initiation factor 1A (EIF1A) and serine/threonine-protein phosphatase 1 (PP1) displayed the highest stability in L. salmonis, while the combination of PP1 and ribosomal protein S13 (RPS13) was found to have the highest stability in C. elongatus. These genes are well-suited reference genes for qPCR applications which allow for accurate normalization of target genes.


Assuntos
Copépodes , Animais , Copépodes/genética , RNA-Seq , Sequência de Bases , Transcriptoma , Reação em Cadeia da Polimerase em Tempo Real
4.
Front Genet ; 14: 1303898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299097

RESUMO

Salmon louse (Lepeophtheirus salmonis) is a skin- and blood-feeding ectoparasite, infesting salmonids. While feeding, labial gland proteins from the salmon louse may be deposited on the Atlantic salmon (Salmo salar) skin. Previously characterized labial gland proteins are involved in anti-coagulation and may contribute to inhibiting Atlantic salmon from mounting a sufficient immune response against the ectoparasite. As labial gland proteins seem to be important in the host-parasite interaction, we have, therefore, identified and characterized ten enzymes localized to the labial gland. They are a large group of astacins named L. salmonis labial gland astacin 1-8 (LsLGA 1-8), one serine protease named L. salmonis labial gland serine protease 1 (LsLGSP1), and one apyrase named L. salmonis labial gland apyrase 1 (LsLGAp1). Protein domain predictions showed that LsLGA proteins all have N-terminal ShK domains, which may bind to potassium channels targeting the astacins to its substrate. LsLGA1 and -4 are, in addition, expressed in another gland type, whose secrete also meets the host-parasite interface. This suggests that LsLGA proteins may have an anti-microbial function and may prevent secondary infections in the wounds. LsLGAp1 is predicted to hydrolyze ATP or AMP and is, thereby, suggested to have an immune dampening function. In a knockdown study targeting LsLGSP1, a significant increase in IL-8 and MMP13 at the skin infestation site was seen under LsLGSP1 knockdown salmon louse compared to the control, suggesting that LsLGSP1 may have an anti-inflammatory effect. Moreover, most of the identified labial gland proteins are expressed in mature copepodids prior to host settlement, are not regulated by starvation, and are expressed at similar or higher levels in lice infesting the salmon louse-resistant pink salmon (Oncorhynchus gorbuscha). This study, thereby, emphasizes the importance of labial gland proteins for host settlement and their immune dampening function. This work can further contribute to anti-salmon louse treatment such as vaccine development, functional feed, or gene-edited salmon louse-resistant Atlantic salmon.

5.
BMC Genomics ; 22(1): 832, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34789144

RESUMO

BACKGROUND: The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. METHODS: Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. RESULTS: Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. CONCLUSIONS: We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Salmo salar , Animais , Copépodes/genética , Doenças dos Peixes/genética , Muda/genética , Salmo salar/genética , Transcriptoma
6.
Genomics ; 113(6): 3666-3680, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403763

RESUMO

Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.


Assuntos
Copépodes , Doenças dos Peixes , Parasitos , Aclimatação , Animais , Copépodes/genética , Copépodes/parasitologia , Doenças dos Peixes/genética , Parasitos/genética , Transcriptoma
7.
PLoS One ; 16(5): e0251575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014986

RESUMO

The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic crustacean that annually inflicts substantial losses to the aquaculture industry in the northern hemisphere and poses a threat to the wild populations of salmonids. The salmon louse life cycle consists of eight developmental stages each separated by a molt. Fushi Tarazu Factor-1 (FTZ-F1) is an ecdysteroid-regulated gene that encodes a member of the NR5A family of nuclear receptors that is shown to play a crucial regulatory role in molting in insects and nematodes. Characterization of an FTZ-F1 orthologue in the salmon louse gave two isoforms named αFTZ-F1 and ßFTZ-F1, which are identical except for the presence of a unique N-terminal domain (A/B domain). A comparison suggest conservation of the FTZ-F1 gene structure among ecdysozoans, with the exception of nematodes, to produce isoforms with unique N-terminal domains through alternative transcription start and splicing. The two isoforms of the salmon louse FTZ-F1 were expressed in different amounts in the same tissues and showed a distinct cyclical expression pattern through the molting cycle with ßFTZ-F1 being the highest expressed isoform. While RNA interference knockdown of ßFTZ-F1 in nauplius larvae and in pre-adult males lead to molting arrest, knockdown of ßFTZ-F1 in pre-adult II female lice caused disruption of oocyte maturation at the vitellogenic stage. No apparent phenotype could be observed in αFTZ-F1 knockdown larvae, or in their development to adults, and no genes were found to be differentially expressed in the nauplii larvae following αFTZ-F1 knockdown. ßFTZ-F1 knockdown in nauplii larvae caused both down and upregulation of genes associated with proteolysis and chitin binding and affected a large number of genes which are in normal salmon louse development expressed in a cyclical pattern. This is the first description of FTZ-F1 gene function in copepod crustaceans and provides a foundation to expand the understanding of the molecular mechanisms of molting in the salmon louse and other copepods.


Assuntos
Proteínas de Artrópodes/genética , Copépodes/genética , Fator Esteroidogênico 1/genética , Animais , Copépodes/crescimento & desenvolvimento , Feminino , Doenças dos Peixes/parasitologia , Estágios do Ciclo de Vida , Masculino , Muda , Isoformas de Proteínas/genética
8.
Parasit Vectors ; 14(1): 206, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874988

RESUMO

BACKGROUND: The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fish. Atlantic salmon (Salmo salar) exhibit only a limited and ineffective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host-parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES-like genes. METHODS: Lepeophtheirus salmonis microsomal glutathione S-transferase 1 like (LsMGST1L) and LsPGES3L were investigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identified LsPGES2 gene was analyzed in double stranded (ds) RNA-mediated knockdown (KD) salmon louse. RESULTS: Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA-mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output. The ability of the parasite to infect or modulate the immune response of the host fish was also not affected by KD. CONCLUSIONS: Salmon louse prostaglandins may play endogenous roles in the management of reproduction and oxidative stress and may be a product of salmon louse blood digestions.


Assuntos
Proteínas de Artrópodes/metabolismo , Copépodes/enzimologia , Doenças dos Peixes/parasitologia , Prostaglandina-E Sintases/metabolismo , Animais , Proteínas de Artrópodes/genética , Copépodes/classificação , Copépodes/genética , Copépodes/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Parasita , Masculino , Filogenia , Prostaglandina-E Sintases/genética , Prostaglandinas/metabolismo , Salmo salar/parasitologia
9.
Int J Parasitol ; 50(10-11): 873-889, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745476

RESUMO

Treatment of infestation by the ectoparasite Lepeophtheirus salmonis relies on a small number of chemotherapeutant treatments that currently meet with limited success. Drugs targeting chitin synthesis have been largely successful against terrestrial parasites where the pathway is well characterised. However, a comparable approach against salmon lice has been, until recently, less successful, likely due to a poor understanding of the chitin synthesis pathway. Post-transcriptional silencing of genes by RNA interference (RNAi) is a powerful method for evaluation of protein function in non-model organisms and has been successfully applied to the salmon louse. In the present study, putative genes coding for enzymes involved in L. salmonis chitin synthesis were characterised after knockdown by RNAi. Nauplii I stage L. salmonis were exposed to double-stranded (ds) RNA specific for several putative non-redundant points in the pathway: glutamine: fructose-6-phosphate aminotransferase (LsGFAT), UDP-N-acetylglucosamine pyrophosphorylase (LsUAP), N-acetylglucosamine phosphate mutase (LsAGM), chitin synthase 1 (LsCHS1), and chitin synthase 2 (LsCHS2). Additionally, we targeted three putative chitin deacetylases (LsCDA4557, 5169 and 5956) by knockdown. Successful knockdown was determined after moulting to the copepodite stage by real-time quantitative PCR (RT-qPCR), while infectivity potential (the number of attached chalimus II compared with the initial number of larvae in the system) was measured after exposure to Atlantic salmon and subsequent development on their host. Compared with controls, infectivity potential was not compromised in dsAGM, dsCHS2, dsCDA4557, or dsCDA5169 groups. In contrast, there was a significant effect in the dsUAP-treated group. However, of most interest was the treatment with dsGFAT, dsCHS1, dsCHS1+2, and dsCDA5956, which resulted in complete abrogation of infectivity, despite apparent compensatory mechanisms in the chitin synthesis pathway as detected by qPCR. There appeared to be a common phenotypic effect in these groups, characterised by significant aberrations in appendage morphology and an inability to swim. Ultrastructurally, dsGFAT showed a significantly distorted procuticle without distinct exo/endocuticle and intermittent electron dense (i.e. chitin) inclusions, and together with dsUAP and dsCHS1, indicated delayed entry to the pre-moult phase.


Assuntos
Quitina/biossíntese , Copépodes , Interferência de RNA , Animais , Quitina Sintase , Copépodes/enzimologia , Copépodes/genética , Doenças dos Peixes/parasitologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Nucleotidiltransferases , RNA de Cadeia Dupla , Salmo salar/parasitologia
10.
Parasit Vectors ; 13(1): 225, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375890

RESUMO

BACKGROUND: Blood-feeding is a common strategy among parasitizing arthropods, including the ectoparasitic salmon louse (Lepeophtheirus salmonis), feeding off its salmon host's skin and blood. Blood is rich in nutrients, among these iron and heme. These are essential molecules for the louse, yet their oxidative properties render them toxic to cells if not handled appropriately. Blood-feeding might therefore alter parasite gene expression. METHODS: We infected Atlantic salmon with salmon louse copepodids and sampled the lice in two different experiments at day 10 and 18 post-infestation. Parasite development and presence of host blood in their intestines were determined. Lice of similar instar age sampled from body parts with differential access to blood, namely from gills versus lice from skin epidermis, were analysed for gene expression by RNA-sequencing in samples taken at day 10 for both experiments and at day 18 for one of the experiments. RESULTS: We found that lice started feeding on blood when becoming mobile preadults if sitting on the fish body; however, they may initiate blood-feeding at the chalimus I stage if attached to gills. Lice attached to gills develop at a slower rate. By differential expression analysis, we found 355 transcripts elevated in lice sampled from gills and 202 transcripts elevated in lice sampled from skin consistent in all samplings. Genes annotated with "peptidase activity" were among the ones elevated in lice sampled from gills, while in the other group genes annotated with "phosphorylation" and "phosphatase" were pervasive. Transcripts elevated in lice sampled from gills were often genes relatively highly expressed in the louse intestine compared with other tissues, while this was not the case for transcripts elevated in lice sampled from skin. In both groups, more than half of the transcripts were from genes more highly expressed after attachment. CONCLUSIONS: Gill settlement results in an alteration in gene expression and a premature onset of blood-feeding likely causes the parasite to develop at a slower pace.


Assuntos
Copépodes , Doenças dos Peixes/parasitologia , Animais , Sangue , Copépodes/crescimento & desenvolvimento , Copépodes/metabolismo , Comportamento Alimentar , Perfilação da Expressão Gênica , Brânquias , Larva/crescimento & desenvolvimento , Larva/metabolismo , Salmão/parasitologia
11.
Mol Biochem Parasitol ; 232: 111197, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251953

RESUMO

The salmon louse, Lepeophtheirus salmonis, is a hematophagous ectoparasite of salmonid fish. Due to its blood-feeding activity, the louse is exposed to great amounts of iron, which is an essential, yet potentially toxic mineral. The major known iron storage protein is ferritin, which the salmon louse encodes four genes of (LsFer1-4). Two of the ferritins are predicted to be secreted. These are one of the heavy chain homologs (LsFer1) and the light chain homolog (LsFer2). Here, we perform functional studies and characterize the two secreted ferritins. Our results show that knocking down LsFer1 and LsFer2 both negatively affect the parasite's physiology, as it is not able to properly feed and reproduce. In a starvation experiment, the transcript levels of both LsFer1 and LsFer2 decrease during the starvation period. Combined, these results demonstrate the importance of these genes for the normal parasite biology, and they could thus potentially be targets for pest management.


Assuntos
Proteínas de Artrópodes/metabolismo , Copépodes/metabolismo , Ferritinas/metabolismo , Doenças dos Peixes/parasitologia , Óvulo/crescimento & desenvolvimento , Parasitos/metabolismo , Doenças Parasitárias em Animais/parasitologia , Animais , Proteínas de Artrópodes/genética , Copépodes/genética , Ferritinas/genética , Doenças dos Peixes/sangue , Óvulo/metabolismo , Parasitos/genética , Doenças Parasitárias em Animais/sangue
12.
Sci Rep ; 9(1): 4218, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862948

RESUMO

Intestinal absorption of heme has remained enigmatic for years, even though heme provides the most bioavailable form of iron. The salmon louse, Lepeophtheirus salmonis, is a heme auxotrophic ectoparasite feeding on large quantities of blood from its host, the salmon. Here we show that a scavenging CD36-like receptor is a potential mediator of heme absorption in the intestine of the salmon louse. The receptor was characterized by a heme binding assay using recombinantly expressed protein, in situ hybridization and immunohistochemistry, as well as functional knockdown studies in the louse. A computational structural model of the receptor predicted a binding pocket for heme, as also supported by in silico docking. The mRNA and protein were expressed exclusively in the intestine of the louse. Further, knocking down the transcript resulted in lower heme levels in the adult female louse, production of shorter egg strings, and an overall lower hatching success of the eggs. Finally, starving the lice caused the transcript expression of the receptor to decrease. To our knowledge, this is the first time a CD36-like protein has been suggested to be an intestinal heme receptor.


Assuntos
Proteínas de Artrópodes , Copépodes , Absorção Intestinal , Intestinos , Simulação de Acoplamento Molecular , Receptores Depuradores , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sítios de Ligação , Copépodes/química , Copépodes/metabolismo , Heme , Receptores Depuradores/química , Receptores Depuradores/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-30326269

RESUMO

Animals with exoskeleton need to molt to grow and develop. Molting is well described in some arthropods especially insects. Chitin is a polymer of N-acetylglucosamine, and one of the major components of the exoskeleton of arthropods. Chitin is synthesized and degraded by a series of enzymes during the molting cycle. However, the presence and function of these enzymes are largely unknown in copepods such as the ectoparasite salmon louse (Lepeophtheirus salmonis) a major pest in salmonid aquaculture. Here we describe six genes found in the L. salmonis genome (LsCHS1, LsCHS2, LsGFAT, LsGNA1, LsAGM, and LsUAP) with high homology to enzymes in the chitin synthesis pathway. The transcription profiles of these enzymes together with three chitinases enzymes (LsChi1, LsChi2, and LsChi4), which have been characterized before, were examined during the synthesis of a new exoskeleton and revealed a dynamical expression concurrent with the morphological changes during the molt cycle. Further understanding of chitin metabolism and its regulation may prove useful tool to develop new pesticides.


Assuntos
Quitina/biossíntese , Copépodes/metabolismo , Perfilação da Expressão Gênica , Animais , Quitina/metabolismo , Copépodes/genética , Hidrólise , Filogenia , RNA Mensageiro/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-28087330

RESUMO

Heme peroxidases are the most abundant type of peroxidase catalyzing a H2O2-dependent oxidation of a wide variety of substrates. They are involved in numerous processes like the innate immune response, hormone and prostaglandin synthesis and crosslinking of proteins within extracellular matrixes (ECM) as well as molecules within the cuticle and chorion of arthropods and nematodes. In the present study, a Lepeophtheirus salmonis heme peroxidase (LsHPX) 1 was characterized. Amino acids in the active site of heme peroxidases were conserved, and the predicted protein sequence showed the highest similarity to genes annotated as chorion peroxidases and genes suggested to be involved in cuticle hardening or adhesion. LsHPX1 exhibited a dynamic expression during ontogenesis and during the nauplius molting cycle. Transcripts were localized to muscle cells near the muscle-tendon junction, in nerve tissue especially at neuromuscular junctions, subcuticular epithelium, subepithelial cells facing the hemolymph, exocrine glands within the subepithelial tissue and in isolated cells within the testis. Knock-down of LsHPX1 in nauplius larvae decreased the swimming activity of emerging copepodids. Histological analysis of knock-down animals revealed increased spacing between myofibers and changes in subepithelial and exocrine gland tissue. Considering these results, the potential role of LsHPX1 in crosslinking molecules of salmon louse ECMs is discussed.


Assuntos
Proteínas de Artrópodes/metabolismo , Copépodes/enzimologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Heme/metabolismo , Junção Neuromuscular/metabolismo , Peroxidases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Domínio Catalítico , Sequência Conservada , Copépodes/citologia , Copépodes/crescimento & desenvolvimento , Copépodes/fisiologia , Matriz Extracelular/enzimologia , Feminino , Técnicas de Silenciamento de Genes , Estágios do Ciclo de Vida , Masculino , Muda , Junção Neuromuscular/citologia , Junção Neuromuscular/enzimologia , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo , Peroxidases/antagonistas & inibidores , Peroxidases/química , Peroxidases/genética , Interferência de RNA , Especificidade por Substrato , Natação
15.
Exp Parasitol ; 159: 79-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26348267

RESUMO

The salmon louse (Lepeophtheirus salmonis) is a major parasite of salmonid fish in the marine environment. The interaction between the parasite and the host upon infection is not completely understood. However, it is clear that the parasite influences the host and its immune system. Prostaglandins produced by parasites such as flatworms, roundworms and ticks are documented or assumed to play a role in immunomodulation of the host. In the salmon louse, the effect of prostaglandins on the host is assumed, but remains to be documented. In this study, a salmon louse prostaglandin E2 synthase (LsPGES2) is characterized. Ontogenetic analysis showed that LsPGES2 is relatively stable expressed during development. The highest level of expression was seen in the free living stages, although elevated levels of LsPGES2 were also found in adult females. In copepodids, LsPGES2 is found around muscle cells, while it is observed in the reproductive organs of adult female lice. LsPGES2 expression was knocked-down by RNA interference in nauplii, but emerging copepodids did not display any changes in morphology nor ability to infect and develop to adult stages on fish. Additional knock-down of LsPGES2 in adult female lice did not produce any characteristic changes in phenotype nor reproductive output. It is concluded that under these experimental conditions, knock-down of LsPGES2 did not affect any essential functions of the salmon louse, neither in the free-living nor the parasitic stages.


Assuntos
Copépodes/enzimologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Oxirredutases Intramoleculares/genética , Salmo salar/parasitologia , Sequência de Aminoácidos , Animais , Copépodes/classificação , Copépodes/genética , Ectoparasitoses/parasitologia , Etiquetas de Sequências Expressas/química , Feminino , Técnicas de Silenciamento de Genes , Hibridização In Situ , Oxirredutases Intramoleculares/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Prostaglandina-E Sintases , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
16.
BMC Genomics ; 16: 81, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25765704

RESUMO

BACKGROUND: Nuclear receptors have crucial roles in all metazoan animals as regulators of gene transcription. A wide range of studies have elucidated molecular and biological significance of nuclear receptors but there are still a large number of animals where the knowledge is very limited. In the present study we have identified an RXR type of nuclear receptor in the salmon louse (Lepeophtheirus salmonis) (i.e. LsRXR). RXR is one of the two partners of the Ecdysteroid receptor in arthropods, the receptor for the main molting hormone 20-hydroxyecdysone (E20) with a wide array of effects in arthropods. RESULTS: Five different LsRXR transcripts were identified by RACE showing large differences in domain structure. The largest isoforms contained complete DNA binding domain (DBD) and ligand binding domain (LBD), whereas some variants had incomplete or no DBD. LsRXR is transcribed in several tissues in the salmon louse including ovary, subcuticular tissue, intestine and glands. By using Q-PCR it is evident that the LsRXR mRNA levels vary throughout the L. salmonis life cycle. We also show that the truncated LsRXR transcript comprise about 50% in all examined samples. We used RNAi to knock-down the transcription in adult reproducing female lice. This resulted in close to zero viable offspring. We also assessed the LsRXR RNAi effects using a L. salmonis microarray and saw significant effects on transcription in the female lice. Transcription of the major yolk proteins was strongly reduced by knock-down of LsRXR. Genes involved in lipid metabolism and transport were also down regulated. Furthermore, different types of growth processes were up regulated and many cuticle proteins were present in this group. CONCLUSIONS: The present study demonstrates the significance of LsRXR in adult female L. salmonis and discusses the functional aspects in relation to other arthropods. LsRXR has a unique structure that should be elucidated in the future.


Assuntos
Copépodes/genética , Interações Hospedeiro-Parasita/genética , Receptores do Ácido Retinoico/genética , Animais , Copépodes/patogenicidade , Proteínas de Ligação a DNA/genética , Ecdisterona/genética , Ecdisterona/metabolismo , Feminino , Estágios do Ciclo de Vida , Metabolismo dos Lipídeos/genética , Dados de Sequência Molecular , Ovário/crescimento & desenvolvimento , Ovário/parasitologia , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores do Ácido Retinoico/metabolismo , Reprodução/genética , Salmão/parasitologia
17.
Exp Parasitol ; 151-152: 39-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25643862

RESUMO

The salmon louse (Lepeophtheirus salmonis spp.) is an economically important parasite on Atlantic salmon reared in aquaculture globally. Production and degradation of chitin, a major component of the exoskeleton, is the target of some pesticides (Di/Teflubenzuron) used in management of lice on farmed fish. These chemicals inhibit molting of the salmon louse leading to the death of the parasite. We found three chitinases (LsChi1, LsChi2 and LsChi4) in the salmon louse genome. Sequence analysis and phylogeny showed that they belong to the GH18 type of chitinase group and show high sequence similarity to chitinases found in other crustaceans and in insects. Expression patterns were different for all three chitinases suggesting different functions during louse development. Furthermore, the function of LsChi2 was further explored through the use of RNA interference and infection trials. Copepodids with knock down of LsChi2 transcripts were deformed and showed a highly reduced infection success.


Assuntos
Quitinases/genética , Copépodes/enzimologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Salmo salar/parasitologia , Sequência de Aminoácidos , Animais , Quitinases/química , Quitinases/classificação , Quitinases/metabolismo , Copépodes/anatomia & histologia , Copépodes/genética , DNA Complementar/biossíntese , Ectoparasitoses/parasitologia , Feminino , Masculino , Filogenia , RNA/genética , RNA/isolamento & purificação , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
18.
Parasitol Int ; 64(1): 86-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451218

RESUMO

The salmon louse (Lepeophtheirus salmonis) is an ectoparasitic copepod causing severe problems to the fish farming industry and to wild salmonids. Morphologically, all stages in the life cycle of L. salmonis have been described in detail based on successive samples from host populations. However, the rate of development differs between males and females as well as between individuals. It has therefore been difficult to observe development within stages, and this has led to a longstanding misinterpretation of the number of chalimus stages. Here samples of chalimi obtained for 12 consecutive days were observed daily in incubators. Chalimus 1 was able to molt in incubators only when fully grown and close to molting, whereas chalimus 2 was able to molt at about 60% of total instar growth. Total length instar growth was about 35% in both chalimus 1 and chalimus 2 and about equal among males and females; the cephalothorax increased by about 12% and the posterior body by about 80%. Instar growth was probably the main factor that led to the former belief that L. salmonis had four chalimus stages. Relative total length increase at molting was at the same order of magnitude as instar growth, but total length of females increased significantly more than that of males at molting. Consequently, a sexual size dimorphism was established upon molting to chalimus 2 and males were about 10% smaller than females. While growth by molting was mainly caused by cephalothorax increase, instar growth was mainly due to increase of the posterior body. The cephalothorax/total length ratio decreased from beginning to end of the instar phase suggesting that it may be used as an instar age marker. Male and female chalimus 2 can almost uniquely be identified by cephalothorax length. Chalimus 1 lasted between 5 and 6 days for males and between 6 and 7 days for females at 10°C. Chalimus 2 males lasted between 6 and 7 days and females between 7 and 8 days.


Assuntos
Copépodes/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Muda , Animais , Copépodes/ultraestrutura , Ectoparasitoses/parasitologia , Ectoparasitoses/veterinária , Feminino , Doenças dos Peixes/parasitologia , Larva/crescimento & desenvolvimento , Masculino , Muda/fisiologia , Salmo salar/parasitologia , Caracteres Sexuais
19.
Exp Parasitol ; 140: 44-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632188

RESUMO

The salmon louse (Lepeophtheirus salmonis), an ectoparasitic copepod of salmonid fish, is a major threat to aquaculture in Norway, Ireland, Scotland and Canada. Due to rise in resistance against existing pesticides, development of novel drugs or vaccines is necessary. Posttranscriptional gene silencing by RNA interference (RNAi), when established in a high throughput system is a potential method for evaluation of molecular targets for new medical compounds or vaccine antigens. Successful use of RNAi has been reported in several stages of salmon lice. However, when we employed a previously described protocol for planktonic stages, no reproducible down-regulation of target genes was gained. In the present study, we describe a robust method for RNAi, where nauplius larvae are soaked in seawater added double stranded RNA (dsRNA). In order to test for when dsRNA may be introduced, and for the efficacy and duration of RNAi, we performed a series of experiments on accurately age determined larvae, ranging from the hatching egg to the copepodid with a salmon louse coatomer and a putative prostaglandin E synthase gene. Presumptive knock-down was monitored by real time PCR. Significant gene silencing was obtained only when nauplius I larvae were exposed to dsRNA during the period in which they molted to nauplius II. A knock down effect could be detected 2days after soaking, and it remained stable until the last measurement, on day 12. Soaking nauplius I larvae, knock-down was verified for six additional genes with a putative role in molting. For one chitinase, a loss-of-function phenotype with abnormal swimming was obtained. Hence, RNAi, induced in the nauplius, may facilitate studies of the molecular biology of the louse, such as the function of specific genes in developmental processes and physiology, host recognition, host-parasite interaction, and, in extension, the engineering of novel medicines.


Assuntos
Copépodes/genética , Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , Animais , Copépodes/crescimento & desenvolvimento , Copépodes/fisiologia , DNA Complementar/biossíntese , Regulação para Baixo , Ectoparasitoses/parasitologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Expressão Gênica/genética , Larva , Locomoção , Muda , RNA/genética , RNA/isolamento & purificação , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Salmo salar/parasitologia
20.
PLoS One ; 8(9): e73539, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069203

RESUMO

Each year the salmon louse (Lepeophtheirussalmonis Krøyer, 1838) causes multi-million dollar commercial losses to the salmon farming industry world-wide, and strict lice control regimes have been put in place to reduce the release of salmon louse larvae from aquaculture facilities into the environment. For half a century, the Lepeophtheirus life cycle has been regarded as the only copepod life cycle including 8 post-nauplius instars as confirmed in four different species, including L. salmonis. Here we prove that the accepted life cycle of the salmon louse is wrong. By observations of chalimus larvae molting in incubators and by morphometric cluster analysis, we show that there are only two chalimus instars: chalimus 1 (comprising the former chalimus I and II stages which are not separated by a molt) and chalimus 2 (the former chalimus III and IV stages which are not separated by a molt). Consequently the salmon louse life cycle has only six post-nauplius instars, as in other genera of caligid sea lice and copepods in general. These findings are of fundamental importance in experimental studies as well as for interpretation of salmon louse biology and for control and management of this economically important parasite.


Assuntos
Copépodes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA