RESUMO
Gaining spatial control over innate immune activation is of great relevance during vaccine delivery and anticancer therapy, where one aims at activating immune cells at draining lymphoid tissue while avoiding systemic off-target innate immune activation. Lipid-polymer amphiphiles show high tendency to drain to lymphoid tissue upon local administration. Here, pH-sensitive, cholesteryl end group functionalized polymers as stimuli-responsive carriers are introduced for controlled immunoactivation of draining lymph nodes. Methacrylamide-based monomers bearing pendant 2-propionic-3-methylmaleic anhydride groups are polymerized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization using a cholesterol chain-transfer agent (chol-CTA). The amine-reactive anhydrides are conjugated with various amines, however, while primary amines afforded irreversible imides, secondary amines provided pH-responsive conjugates that are released upon acidification. This can be applied to fluorescent dyes for irreversibly carrier labeling or immunostimulatory Toll-like receptor (TLR) 7/8 agonists as cargos for pH-responsive delivery. Hydrophilization of remaining anhydride repeating units with short PEG-chains yielded cholesteryl-polymer amphiphiles that showed efficient cellular uptake and increased drug release at endosomal pH. Moreover, reversibly conjugated TLR 7/8 agonist amphiphiles efficiently drained to lymph nodes and increased the number of effectively maturated antigen-presenting cells after subcutaneous injection in vivo. Consequently, cholesteryl-linked methacrylamide-based polymers with pH-sensitive 2-propionic-3-methylmaleic anhydride side groups provide ideal features for immunodrug delivery.
RESUMO
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.
Assuntos
Anidridos Citracônicos , Polímeros , Polímeros/química , Aminas/química , Anidridos , Concentração de Íons de HidrogênioRESUMO
We present a facile and adaptable method to purify and isolate DNA-polymer conjugates from different uncharged homo, random, or block copolymer families. Anion exchange chromatography is used to separate the reaction solution and retrieve the excess unreacted polymer and oligonucleotide. The stationary phase has a high efficiency (25 nmol of DNA per run), facilitating the purification of large batches without compromising the peak shape and resolution. To demonstrate the versatility of this method, different types of polymers, including acrylates, methacrylates, and acrylamides containing hydrophilic and hydrophobic blocks, were purified with high yields. Additionally, DNA-polymer conjugates with various DNA block lengths were also successfully purified, further highlighting the broad applicability of this method.