Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chemistry ; : e202401031, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588000

RESUMO

The photochemical reaction of iodine and graphene induces strong new Raman modes due to the formation of trans-oligoene substructures in graphene domains. This unique reactivity was demonstrated before on defect-free graphene, however leaving the influence of e. g. carbon vacancies, unexplored. Here, we investigate the photochemical reaction applied on graphene with varying average distances of lattice defects and statistically analyze the characteristic Raman modes which develop with the iodination reaction. We show that the iodination reaction does not lead to Raman-active defects and thus, the newly formed trans-oligoene substructures do not contribute to the D-mode of graphene. A statistical analysis reveals the correlation between the average distance of lattice defects and the intensity of the v1-mode. For defective graphene with average defect distances below ~1 nm no new Raman modes evolve, which is the lower limit of the substructure size probed at 532 nm and explains why this observation was not possible before using common graphene oxide as graphene source.

2.
J Am Chem Soc ; 146(11): 7431-7438, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446768

RESUMO

Wet-chemical oxidation of graphite in a mixture of sulfuric acid with a strong oxidizer, such as potassium permanganate, leads to the formation of graphene oxide with hydroxyl and epoxide groups as the major functional groups. Nevertheless, the reaction mechanism remains unclear and the source of oxygen is a subject of debate. It could theoretically originate from the oxidizer, water, or sulfuric acid. In this study, we employed 18O and 17O labeled reagents to experimentally elucidate the reaction mechanism and, thus, determine the origin of oxo-functional groups. Our findings reveal the multifaceted roles of sulfuric acid, acting as a dispersion medium, a dehydrating agent for potassium permanganate, and an intercalant. Additionally, it significantly acts as a source of oxygen next to manganese oxides. Through 17O solid-state magic-angle spinning (MAS) NMR experiments, we exclude water as a direct reaction partner during oxygenation. With labeling experiments, we conclude on mechanistic insights, which may be exploited for the synthesis of novel graphene derivatives.

3.
Small ; : e2311987, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506566

RESUMO

Functionalization of pristine graphene by hydrogen and fluorine is well studied, resulting in graphane and fluorographene structures. In contrast, functionalization of pristine graphene with iodine has not been reported. Here, the functionalization of graphene with iodine using photochemical activation is presented, which is thermally reversible at 400 °C. Additional dispersive dominant Raman modes that are probed by resonance Raman spectroscopy are observed. Additionally, iodinated graphene is probed by Kelvin probe force microscopy and by transport measurements showing p-doping surpassing non-covalent iodine doping by charge transfer-complex formation. The emergent Raman modes combined with strong p-doping indicate that iodine functionalization is distinct from simple iodine doping. A reaction mechanism based on these findings is proposed, identifying the large size of iodine atoms as the probable cause governing regiochemically controlled addition due to steric hinderance of reactive sites. The modification of the electronic structure is explained by the confinement of 1D trans-oligoene chains between sp3 -defects. These results demonstrate the uniqueness of iodine reactivity toward graphene and the modification of the electronic structure of iodinated graphene, highlighting its dependence on the spatial arrangement of substituents.

4.
Angew Chem Int Ed Engl ; 62(39): e202307395, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522562

RESUMO

Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.

5.
Phys Chem Chem Phys ; 24(14): 8076-8080, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35320329

RESUMO

Electrodes for electrochemical reduction of graphene oxide (GO) are coated with thin films using drop-casting and evaporation-assisted self-assembly. The influence of loading, the size of the flakes of GO, and the macroscopic coffee-ring effect occurring during drying are investigated. The effective transfer of protons and electrons in the electrochemical reduction of GO is decisive.

6.
J Phys Chem Lett ; 12(41): 10009-10014, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34618468

RESUMO

Heteroatom-doped graphene attracted tremendous attention because of advanced electrocatalytic properties, for example, for oxygen reduction. However, the role of oxygen atoms as heteroatoms in graphene should be explored more deeply. Here, we used statistical Raman spectroscopy for single-layer material analysis and found that the regiochemistry close to vacancy defects plays a decisive role. Accordingly, defects possess a guiding effect on the introduction of oxygen functional groups close to those defect-sites. After the addition of oxo-groups close to vacancy defects, the activity and hydrogen peroxide (H2O2) selectivity of the material on hydrogen peroxide production improved significantly. The selectivity of H2O2 is above 84%, which is higher than the initial oxo-functionalized graphene and electrochemically reduced graphene. The half-wave potential is 0.73 VRHE, which is more positive than the initial oxo-functionalized graphene.

7.
Nanoscale ; 13(36): 15464-15470, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34505854

RESUMO

Achieving tunable optoelectronic properties and clarifying interlayer interactions are key challenges in the development of 2D heterostructures. Herein, we report the feasible modulation of the optoelectronic properties of monolayer MoS2 (1L-MoS2) on three different graphene monolayers with varying ability in extracting electrons. Monolayer oxygen-functionalized graphene (1L-oxo-G, a high amount of oxygen of 60%) with a work function (WF) of 5.67 eV and its lowly oxidized reduction product, namely reduced-oxo-G (1L-r-oxo-G, a low amount of oxygen of 0.1%), with a WF of 5.85 eV serving as hole injection layers significantly enhance the photoluminescence (PL) intensity of MoS2, whereas pristine monolayer graphene (1L-G) with a work function (WF) of 5.02 eV results in PL quenching of MoS2. The enhancement in the PL intensity is due to increase of neutral exciton recombination. Furthermore, 1L-r-oxo-G/MoS2 exhibited a higher increase (5-fold) in PL than 1L-oxo-G/MoS2 (3-fold). Our research can help modulate the carrier concentration and electronic type of 1L-MoS2 and has promising applications in optoelectronic devices.

8.
Phys Chem Chem Phys ; 23(32): 17521-17529, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34368821

RESUMO

The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects.

9.
J Phys Chem B ; 125(17): 4438-4446, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881311

RESUMO

Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, J-aggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have broad implications for the photophysics of dye aggregates.

10.
J Phys Chem B ; 125(4): 1207-1213, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475384

RESUMO

The absorption and emission properties of organic dyes are generally tuned by altering the substitution pattern. However, tuning the fluorescence lifetimes over a range of several 10 ns while barely affecting the spectral features and maintaining a moderate fluorescence quantum yield is challenging. Such properties are required for lifetime multiplexing and barcoding applications. Here, we show how this can be achieved for the class of fluoranthene dyes, which have substitution-dependent lifetimes between 6 and 33 ns for single wavelength excitation and emission. We explore the substitution-dependent emissive properties in the crystalline solid state that would prevent applications. Furthermore, by analyzing dye mixtures and embedding the dyes in carboxy-functionalized 8 µm-sized polystyrene particles, the unprecedented potential of these dyes as labels and encoding fluorophores for time-resolved fluorescence detection techniques is demonstrated.

11.
Nanoscale Adv ; 3(4): 963-982, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133283

RESUMO

The chemistry and physics of intercalated layered 2D materials (2DMs) are the focus of this review article. Special attention is given to intercalated bilayer and few-layer systems. Thereby, intercalated few-layers of graphene and transition metal dichalcogenides play the major role; however, also other intercalated 2DMs develop fascinating properties with thinning down. Here, we briefly introduce the historical background of intercalation and explain concepts, which become relevent with intercalating few-layers. Then, we describe various synthetic methods to yield intercalated 2DMs and focus next on current research directions, which are superconductivity, band gap tuning, magnetism, optical properties, energy storage and chemical reactions. We focus on major breakthroughs in all introduced sections and give an outlook to this emerging field of research.

12.
Chemistry ; 26(72): 17361-17365, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32997430

RESUMO

Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches.

13.
Nanoscale ; 12(24): 12731-12740, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32524106

RESUMO

Graphene oxide (GO) is a water soluble carbon material in general, suitable for applications in electronics, the environment, and biomedicine. GO is produced by oxidation of abundantly available graphite, turning black graphite into water-dispersible single layers of functionalized graphene-related materials. Therefore, oxidation gives chemicals access to the complete surface area of GO. These fundamentals have led to a rich chemistry of GO. Here, we review the progress made in controlling the synthesis of GO, introduce the current structural models used to explain the phenomena and present versatile strategies to functionalize the surface of GO. Finally, an outlook is given for future directions.

14.
Angew Chem Int Ed Engl ; 59(32): 13657-13662, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315109

RESUMO

The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo-functionalized graphene (oxo-G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo-G flake and correlated the chemical composition and topography corrugation by two-probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo-G, processed at 300 °C, displays C-C sp3 -patches and possibly C-O-C bonds, next to graphene domains and holes. It is striking that those C-O-C/C-C sp3 -separated sp2 -patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3 -patches confine conjugated sp2 -C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3 -C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.

15.
Chemistry ; 26(29): 6694-6702, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32227533

RESUMO

Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic π-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged π-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.

16.
Nanoscale Adv ; 2(1): 176-181, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134009

RESUMO

Functionalized 2D materials have unique properties, but are currently not used for the assembly of van der Waals heterostructures. Here, we present the controlled transfer of artificially synthesized, polar and highly transparent oxo-functionalized graphene, which can decouple graphene layers.

17.
Chemistry ; 26(29): 6484-6489, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31851390

RESUMO

In recent years, graphene oxide has been considered as a soluble precursor of graphene for electronic applications. However, the performance lags behind that of graphene due to lattice defects. Here, the relation between the density of defects in the range of 0.2 % and 1.5 % and the transport properties is quantitatively studied. Therefore, the related flakes of monolayers of graphene were prepared from oxo-functionalized graphene (oxo-G). The morphologic structure of oxo-G was imaged by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Field-effect mobility values were determined to range between 0.3 cm2 V-1 s-1 and 33.2 cm2 V-1 s-1 , which were inversely proportional to the density of defects. These results provide the first quantitative description of the density of defects and transport properties, which plays an important role for potential applications.

18.
Chem Commun (Camb) ; 55(85): 12879, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608351

RESUMO

Correction for 'Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif' by Philipp Rietsch et al., Chem. Commun., 2019, 55, 10515-10518.

19.
Chem Commun (Camb) ; 55(71): 10515-10518, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31414103

RESUMO

A new fluorescent pentaphene derivative is presented that differs from hexabenzocoronene (HBC) by one carbon atom in the basal plane skeleton. A 500% increased fluorescence quantum yield is measured compared to the HBC derivative. The pentaphene compound, obtained by a modified Scholl oxidation, is also emissive in the solid-state, due to the packing motif in the crystal.

20.
Langmuir ; 35(32): 10286-10298, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31369272

RESUMO

In this study, we have systematically investigated the formation of molecular phospholipid films on a variety of solid substrates fabricated from typical surface engineering materials and the fluidic properties of the lipid membranes formed on these substrates. The surface materials comprise of borosilicate glass, mica, SiO2, Al (native oxide), Al2O3, TiO2, ITO, SiC, Au, Teflon AF, SU-8, and graphene. We deposited the lipid films from small unilamellar vesicles (SUVs) by means of an open-space microfluidic device, observed the formation and development of the films by laser scanning confocal microscopy, and evaluated the mode and degree of coverage, fluidity, and integrity. In addition to previously established mechanisms of lipid membrane-surface interaction upon bulk addition of SUVs on solid supports, we observed nontrivial lipid adhesion phenomena, including reverse rolling of spreading bilayers, spontaneous nucleation and growth of multilamellar vesicles, and the formation of intact circular patches of double lipid bilayer membranes. Our findings allow for accurate prediction of membrane-surface interactions in microfabricated devices and experimental environments where model membranes are used as functional biomimetic coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA