Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
J Mol Med (Berl) ; 101(11): 1465-1475, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755493

RESUMO

Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias/metabolismo
3.
Oncogene ; 40(23): 4019-4032, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012098

RESUMO

Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Dinamina II/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Movimento Celular/fisiologia , Feminino , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Mol Med (Berl) ; 98(11): 1615-1627, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955679

RESUMO

The expression of inducible nitric oxide (NO) synthase (iNOS) in human bladder cancer (BC) is a poor prognostic factor associated with invasion and tumor recurrence. Here, we evaluated the relevance of iNOS expression in BC progression and in cancer stem cell (CSC) maintenance in a murine BC model. Also, iNOS expression and CSC markers were analyzed in human BC samples. iNOS inhibitors (L-NAME or 1400W) or shRNA were used on murine BC model with different iNOS expressions and invasiveness grades: MB49 (iNOS+, non-muscle invasive (NMI)) and MB49-I (iNOS++, muscle invasive (MI)), in order to analyzed cell proliferation, tumor growth, angiogenesis, number of CSC, and pluripotential marker expression. iNOS, SOX2, Oct4, and Nanog expressions were also analyzed in human BC samples by qPCR and immunohistochemistry. iNOS inhibtion reduced parameters associated with tumor progression and reduced the number of CSC, wich resulted higher in MB49-I than in MB49, in concordance with the higher expression of SOX2, Oct4, and Nanog. The expression of SOX2 was notoriously diminished, when iNOS was inhibited only in the MI cell line. Similar results were observed in human samples, where MI tumors expressed higher levels of iNOS and pluripotential genes, in comparison to NMI tumors with a positive correlation between those and iNOS, suggesting that iNOS expression is associated with CSC. iNOS plays an important role in BC progression and CSC maintenance. Its inhibition could be a potential therapeutic target to eradicate CSC, responsible for tumor recurrences. KEY MESSAGES: • iNOS expression is involved in bladder tumor development, growth, and angiogenesis. • iNOS expression is involved in bladder cancer stem cell generation and maintenance, playing an important role regulating their self-renewal capacity, especially in muscle invasive murine bladder cancer cells. • iNOS expression is higher in human muscle invasive tumors, in association with a high expression of pluripotential genes, especially of SOX2.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Imuno-Histoquímica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Especificidade de Órgãos/genética , Oxirredução , Neoplasias da Bexiga Urinária/patologia
5.
Front Oncol ; 10: 283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292715

RESUMO

Bladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and ß-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and ß-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples. In in silico studies, a DisGeNET (gene-disease associations database) analysis identified CDH1 (E-cadherin gene) as one with highest score among 130 BC related-genes. COSMIC mutation analysis revealed CDH1 low mutations rates. Compared to MB49 control BC cells, MB49-I invasive cells showed decreased E-cadherin expression, E- to P-cadherin switch, higher ß-catenin nuclear signal and lower cytoplasmic p-Ser33-ß-catenin signal, higher Ephrin-B1 ligand and EphB2 receptor expression, higher Phospho-Stat3 and Urokinase-type Plasminogen Activator (UPA), and UPA receptor expression. MB49-I cells transfected with Ephrin-B1 siRNA showed lower migratory and invasive capacity than control cells (scramble siRNA). By immunohistochemistry, orthotopic MB49-I tumors had lower E-cadherin, increased nuclear ß-catenin, lower pSer33-ß-catenin cytoplasmic signal, and higher Ephrin-B1 expression than MB49 tumors. Similar changes were found in human BC tumors, and 83% of infiltrating tumors depicted a high Ephrin-B1 stain. An association between higher Ephrin-B1 expression and higher stage and tumor grade was found. No association was found between abnormal E-cadherin signal, Ephrin-B1 expression or clinical-pathological parameter. This study thoroughly analyzed E-cadherin and associated changes in BC, and reports Ephrin-B1 as a new marker of tumor aggressiveness.

6.
Nitric Oxide ; 98: 50-59, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147582

RESUMO

BACKGROUND: Bacillus Calmette-Guerin (BCG) is the standard treatment for patients with high-risk non-muscle invasive bladder cancer (BC). Despite its success, about 30-50% of patients are refractory. It was reported that inducible nitric oxide synthase (iNOS) tumor expression is presented in 50% of human BC, associated with bad prognosis and BCG failure. OBJECTIVE: to evaluate in human bladder tumors the association between iNOS expression and the tumor microenvironment focusing on the immunosuppressive protein S100A9. Also, investigate in a preclinical murine MB49-BC model the tumor immunoresponse induced by BCG in combination with the nitric oxide production inhibitor l-NAME. RESULTS: In human bladder tumors, we detected a positive association between iNOS and S100A9 tumor expression, suggesting a relationship between both immunomodulatory proteins. We also found a positive correlation between iNOS tumor expression and the presence of S100A9+ tumor-infiltrating cells, suggesting an immunosuppressive tumor microenvironment induced by the nitric oxide production. Using the subcutaneous murine BC model, we show that similarly to the human pathology, MB49 tumors constitutively expressed iNOS and S100A9 protein. MB49 tumor-bearing mice presented an immunosuppressive systemic profile characterized by fewer cytotoxic cells (CD8+ and NK) and higher suppressor cells (Treg and myeloid-derived suppressor cells -MDSC-) compared to normal mice. BCG treatment reduced tumor growth, increasing local CD8+-infiltrating cells and induced a systemic increase in CD8+ and a reduction in Treg. BCG combined with l-NAME, significantly reduced tumor growth compared to BCG alone, diminishing iNOS and S100A9 tumor expression and increasing CD8+-infiltrating cells in tumor microenvironment. This local response was accompanied by the systemic increase in CD8+ and NK cells, and the reduction in Treg and MDSC, even more than BCG alone. Similar results were obtained using the orthotopic BC model, where an increase in specific cytotoxicity against MB49 tumor cells was detected. CONCLUSION: The present study provides preclinical information where NO inhibition in iNOS-expressing bladder tumors could contribute to improve BCG antitumor immune response. The association between iNOS and S100A9 in human BC supports the hypothesis that iNOS expression is a negative prognostic factor and a promising therapeutic target.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Vacina BCG/farmacologia , Óxido Nítrico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adjuvantes Imunológicos/administração & dosagem , Animais , Antineoplásicos Imunológicos/administração & dosagem , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Calgranulina B/biossíntese , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
7.
Biochem Pharmacol ; 176: 113778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31877271

RESUMO

Muscle-invasive bladder cancer (MIBC) is an aggressive form of urothelial bladder carcinoma (UBC) with poorer outcomes compared to the non-muscle invasive form (NMIBC). Higher recurrent rates and rapid progression after relapse in UBC is known to be linked with chronic inflammation. Here, the preclinical murine models of NMIBC (MB49) and MIBC (MB49-I) were used to assess the antitumor effects of DAB-1, an anti-inflammatory aminobenzoic acid derivative we have developed in order to target cancer-related inflammation. A subchronic toxicity study on cancer-free mice shown that DAB-1 treatment did not affect normal mouse development or normal function of vital organs. In mice bearing MB49-I tumors, whole body accumulation of the radioconjugate [131I]DAB-1 was higher than in control mice, the main sites of [131I]DAB-1 accumulation being the liver (34%), the intestines (21%), and the tumors (18%). In vivo molecular therapy of ectopic and orthotopic tumors indicated that treatment with DAB-1 efficiently inhibited tumor growth, metastasis formation, and mortality rate. The antitumor efficacy of DAB-1 was associated with strong decreased tumor cell proliferation and iNOS expression in tumor tissues and deactivation of macrophages from tumor-bearing mice. Mechanistic investigations revealed that DAB-1 efficiently inhibited i) TNFα/NFΚB and IL6/STAT3 signaling pathways activation; ii) TNFα-induced NO production by decreasing NFΚB transcriptional activation and functional iNOS expression; and iii) cellular proliferation with minimal or no effects on cell mortality or apoptosis. In conclusion, this study provides preclinical and biological/mechanistic data highlighting the potential of DAB-1 as a safe and efficient therapeutic agent for the treatment of patients with NMIBC and MIBC.


Assuntos
Aminobenzoatos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Aminobenzoatos/química , Aminobenzoatos/farmacocinética , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
8.
Nitric Oxide ; 93: 34-43, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542422

RESUMO

Nitric Oxide (NO) is involved in many physiological and pathological processes. It is generated by a family of NO synthases (NOS), being the inducible isoform, iNOS, responsible for higher amounts of NO. Here, we report that pharmacological inhibition of NO production by l-NAME reduces both viability and MAPK activated signalling pathways in iNOS positive human and murine cancer cell lines. In vivo, using syngeneic models, in parallel with tumor reduction induced by l-NAME, collagen deposition and α-SMA positive stromal cells are observed. This observation takes place only when tumor cells express iNOS. In vitro, l-NAME induces viability and differentiation on fibroblast. Our results reveal that NO inhibition contributes to stimulate proliferation and activation of fibroblasts in parallel with tumor reduction of iNOS positive breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Fibroblastos/efeitos dos fármacos , NG-Nitroarginina Metil Éster/uso terapêutico , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncol Lett ; 17(3): 3141-3150, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30867744

RESUMO

The characterization of murine cell lines is of great importance in order to identify preclinical models that could resemble human diseases. Aberrant glycosylation includes the loss, excessive or novel expression of glycans and the appearance of truncated structures. MB49 and MB49-I are currently the only two murine cell lines available for the development of preclinical bladder cancer models. The glycans Lewis X (LeX), Sialyl lewis X (SLeX) and Sialyl Tn (STn) have previously been associated with aggressiveness, dissemination and poor prognosis in human bladder cancer, additionally N-glycolyl GM3 (NGcGM3) is a neo-antigen expressed in many types of tumors; however, to the best of our knowledge, its expression has not previously been assessed in this type of cancer. Taking into account the relevance of glycans in tumor biology and considering that they can act as targets of therapies and biomarkers, the present study evaluated the expression of LeX, SLeX, STn and NGcGM3 in MB49 and MB49-I cells, in different growth conditions such as monolayer cultures, three-dimensional multicellular spheroids and mouse heterotopic and orthotopic tumors. The expression of LeX was not detected in either cell line, whereas SLeX was expressed in monolayers, spheroids and orthotopic tumors of both cell lines. STn was only identified in MB49 monolayers and spheroids. There are no reports concerning the expression of NGcGM3 in human or murine bladder cancer. In our hands, MB49 and MB49-I expressed this ganglioside in all the growth conditions evaluated. The assessment of its expression in cancer cell lines and patient tumors is of great importance, considering the relevance of this ganglioside in tumor biology. The data obtained by the present study demonstrates that glycan expression may be substantially altered depending on the growth conditions, highlighting the importance of the characterization of murine cancer models. To the best of our knowledge, the present study is the first to examine the expression of cancer-associated glycans, in the two murine cell lines available for the development of preclinical studies in bladder cancer.

10.
J Cell Physiol ; 233(9): 6327-6336, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574936

RESUMO

Lab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs. In this study, we test the effectiveness of microdevices for analysis of heterogeneity within CSC populations and its interaction with different components of the extracellular matrix. CSC could be identify using specific markers related to its pluripotency and self-renewal characteristics such as the transcription factor Oct-4 or the surface protein CD44. The results confirm the usefulness of LOC as an effective method for quantification of CSC, through the formation of spheres under conditions of low adhesion or growing on components of the extracellular matrix. The device used is also a good alternative for evaluating the individual growth of each sphere and further identification of these CSC markers by immunofluorescence. In conclusion, LOC devices have not only the already known advantages, but they are also a promising tool since they use small amounts of reagents and are under specific culture parameters. LOC devices could be considered as a novel technology to be used as a complement or replacement of traditional studies on culture plates.


Assuntos
Proliferação de Células/fisiologia , Esferoides Celulares/patologia , Animais , Biomarcadores Tumorais/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Receptores de Hialuronatos/metabolismo , Dispositivos Lab-On-A-Chip , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Esferoides Celulares/metabolismo
11.
Nitric Oxide ; 64: 22-30, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126499

RESUMO

BACKGROUND: A key factor contributing to radio-resistance in conservative invasive bladder cancer (BCa) treatment is tumor hypoxia and a strategy to overcome it is to trigger the production of nitric oxide (NO). On the other hand, ionizing radiation (IR) applied to a primary tumor can induce immunogenic cell death which may set off a cytotoxic immune response against the primary tumor and its metastasis. PURPOSE: To study in vitro and in vivo, the role of BCG as a local sensitizer to overcome hypoxia-associated radio-resistance through the production of NO, and as an immune-stimulator to be used in combination with IR to generate a systemic response for invasive BCa treatment. MATERIALS AND METHODS: We selected the invasive murine BCa cell line MB49-I which expresses inducible NO synthase and produces NO, cultured in vitro in 2D and 3D models, and inoculated in vivo in the subcutaneous of syngeneic mice. RESULTS: in vitro, multicellular murine invasive spheroids mimicked in vivo central tumor necrosis. BCG pre-treatment radio-sensitized spheroids through the induction of NO production, while no effect was shown in monolayers. In vivo, not only did BCG improve the local response to IR but it also decreased the metastatic spread and promoted the development of abscopal effect/rejection of a second tumor. CONCLUSION: Since BCG has already and successfully been used for the treatment of non-invasive BCa and it improves the response to ionizing radiation in invasive BCa, these results are translational relevant to be analyzed in patients with this pathology.


Assuntos
Vacina BCG/uso terapêutico , Radiossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/radioterapia , Animais , Vacina BCG/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Radiação Ionizante , Radiossensibilizantes/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
12.
Eur J Med Chem ; 96: 259-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890076

RESUMO

Inflammation plays a crucial role in many types of cancer and is known to be involved in their initiation and promotion. As such, it is presently recognized as an important risk factor for several types of cancers such as bladder, prostate and breast cancers. The discovery of novel anti-inflammatory compounds can have a huge implication not only for the treatment of cancer but also as preventive and protective treatment modalities. We have recently identified a new compound (1) that presents interesting anti-inflammatory activity. In order to better understand its biological action, we have divided the molecule in its basic components and verified their respective contribution towards the anti-inflammatory response of the whole molecule. We have discovered that only the combination of the maleimide function together with the tert-butyloxycarbonylhydrazinamide function lead to important anti-inflammatory properties. The main derivative 1 can decrease the activating effects of INFγ or IL6 on human (hMϕs) macrophages by 38% or by 64% at a concentration of 10 µM as indicated by a decrease of STAT1 or STAT3 activation. The expression of pro-inflammatory markers CD40 and MHCII in INFγ stimulated hMϕs were reduced by 87% and 49%, respectively with a 3 h pretreatment of 1 at 10 µM. The cell motility assay revealed that 1 at 10 µM can reduce relative cell motility induced by IL6 by 92% in comparison with the untreated control hMϕ monolayers. Compound 1 reduced by 91% the inflammatory response induced by the cytokines (INFγ + TNFα) in the macrophage-like J774A.1 cells at a concentration of 25 µM, as measured by the detection of NO production with the Griess reagent. Furthermore, upon removal of the tert-butyloxycarbonyl protective group the unprotected derivative as a hydrochloride salt (1A) retains interesting anti-inflammatory activity and was found to be less toxic than the parent compound (1).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Ácidos Carboxílicos/farmacologia , Hidrazinas/farmacologia , Macrófagos/efeitos dos fármacos , Maleimidas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Maleimidas/síntese química , Maleimidas/química , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Relação Estrutura-Atividade , Neoplasias da Bexiga Urinária/metabolismo
13.
J Cancer Res Clin Oncol ; 141(10): 1727-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25687381

RESUMO

INTRODUCTION: LM38 murine mammary adenocarcinoma model is formed by LM38-LP (myoepithelial and luminal), LM38-HP (luminal) and LM38-D2 (myoepithelial) cell lines. In a previous work, we had shown that LM38-HP and LM38-D2 cell lines are less malignant than the bicellular LM38-LP cell line. PURPOSE: To study the role of nitric oxide (NO) as one of the mediators of functional interactions between malignant luminal and myoepithelial cells. METHODS AND RESULTS: Using immunohistochemistry, in vivo iNOS expression was only detected in the luminal cells of bicellular LM38-LP and most cells of LM38-HP tumors. In cobalt-induced pseudohypoxia, LM38-LP and LM38-HP cell lines significantly increased HIF-1α and iNOS expression (Western blotting) and therefore NO production (Griess method). This increase was inhibited by the iNOS inhibitor 1400 W. On the other side, NO was not detectable in LM38-D2 cells either in basal or in pseudohypoxia. In addition, pseudohypoxia increased urokinase-type plasminogen activator (uPA) secretion by LM38-LP and LM38-HP cells and migration in the LM38-LP cell line, without modulating these properties in LM38-D2 cells (radial caseinolysis). The NO donor DETA/NONOate (500 µM) was able to increase uPA secretion and in vitro growth of LM38-D2. In agreement, 1400 W prevented in vivo growth of the myoepithelial LM38-D2 cells. CONCLUSIONS: Hypoxia leads to an enhanced NO production by the luminal component, through HIF-1α and iNOS, which can stimulate myoepithelial cell proliferation and uPA secretion. In these new conditions, myoepithelial cells might act as an invasive forefront generating gaps that could help luminal cells to escape from the primary tumor.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Hipóxia/patologia , Neoplasias Mamárias Experimentais/patologia , Óxido Nítrico/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Movimento Celular/fisiologia , Modelos Animais de Doenças , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Células Tumorais Cultivadas
14.
Nitric Oxide ; 36: 11-8, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24211345

RESUMO

Bladder cancer is the second cause of death for urological tumors in man. When the tumor is nonmuscle invasive, transurethral resection is curative. On the other hand, radical cystectomy is the treatment chosen for patients with invasive tumors, but still under treatment, these patients have high risk of dying, by the development of metastatic disease within 5 years. It is therefore important to identify a new therapeutic target to avoid tumor recurrences and tumor progression. Nitric oxide (NO) is an important biological messenger known to influence several types of cancers. In bladder cancer, production of NO and expression and activity of inducible NO synthase was associated to recurrence and progression. The objective of this work was to analyze if inhibition of nitric oxide production could be considered a therapeutic target for bladder tumors expressing iNOS. Using a bladder cancer murine model with different invasiveness grade we have demonstrated that NO inhibition was able to inhibit growth of bladder tumors expressing iNOS. Furthermore, invasive properties of MB49-I orthotopic growth was inhibited using NO inhibitors. This paper also shows that levels of NO in urine can be correlated with tumor size. In conclusion, inhibition of NO could be considered as a therapeutic target that prevents tumor growth and progression. Also, urine NO levels may be useful for measuring tumor growth.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/química , Neoplasias da Bexiga Urinária/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Meios de Cultivo Condicionados/química , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Transplante de Neoplasias
15.
EMBO Mol Med ; 5(12): 1835-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24142880

RESUMO

Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.


Assuntos
Decorina/metabolismo , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Movimento Celular , Citocinas/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Decorina/antagonistas & inibidores , Decorina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
16.
J Urol ; 188(6): 2384-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23088980

RESUMO

PURPOSE: We evaluated the effects of combined PPARg agonist with bacillus Calmette-Guérin in bladder cancer growth in vitro and in vivo, focusing on the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. MATERIALS AND METHODS: PPARs are a superfamily of nuclear receptors that are transcription factors activated by ligands. Activation of PPARg, the γ subtype, causes proliferation inhibition or differentiation of tumor cells. Previously, we reported that the inhibition of murine bladder tumor growth induced by bacillus Calmette-Guérin, which is the standard treatment for patients with nonmuscle invasive, high grade bladder cancer, increased PPARg expression in vitro and in vivo. In vitro the cell growth inhibition induced by bacillus Calmette-Guérin was enhanced by the PPARg agonist 15-d-PGJ2, raising the possibility that PPARg activation may be a therapeutic modality for this disease. RESULTS: In MB49 cells bacillus Calmette-Guérin and 15-d-PGJ2 induced PPARg expression, nuclear translocation and transcriptional activity. In vivo bacillus Calmette-Guérin reduced tumor size, an effect that was partially reversed when bacillus Calmette-Guérin was combined with the PPARg agonist rosiglitazone. The same result was found when we analyzed the effect of the PPARg antagonist BADGE (Fluka Chemical, Buchs, Switzerland) combined with bacillus Calmette-Guérin. Analysis of the activation of macrophages and fibroblasts demonstrated that rosiglitazone inhibited the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. CONCLUSIONS: Results suggest that PPARg is involved in the antitumor action of bacillus Calmette-Guérin. However, exogenous PPARg agonists would not be a favorable therapeutic modality because they can inhibit the tissue remodeling needed for an overall satisfactory bacillus Calmette-Guérin response.


Assuntos
Mycobacterium bovis , PPAR gama/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Administração Intravesical , Análise de Variância , Animais , Western Blotting , Linhagem Celular Tumoral/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , PPAR gama/genética , Valores de Referência , Rosiglitazona , Sensibilidade e Especificidade , Carga Tumoral/efeitos dos fármacos
17.
J Urol ; 188(3): 967-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22819108

RESUMO

PURPOSE: We evaluated the role of inducible nitric oxide synthase and PPARγ as prognostic factors for bladder cancer. MATERIALS AND METHODS: Inducible nitric oxide synthase and PPARγ were evaluated by Western blot and immunohistochemistry in a mouse bladder cancer model of nonmuscle invasive and invasive MB49-I tumor cells, and in human bladder cancer samples. RESULTS: Inducible nitric oxide synthase expression was negative in mouse normal urothelium and higher in invasive than in noninvasive MB49 tumors. In vitro inducible nitric oxide synthase activity, determined as nitrite, was higher in MB49-I than in MB49 cells (p <0.001). In human samples expression was also associated with tumor invasion. Nuclear PPARγ expression was negative in normal mouse urothelium but higher in nonmuscle invasive MB49 than in MB49-I tumors. Similarly in human tumors low PPARγ was associated with poor prognosis factors, such as high histological grade (p = 0.0160) and invasion status (p = 0.0352). A positive correlation was noted between inducible nitric oxide synthase and PPARγ in low histological grade and nonmuscle invasive tumors (Pearson correlation index 0.6368, p = 0.0351, 0.4438 and 0.0168, respectively). As determined by gene reporter assay, PPARγ activity was induced by nitric oxide only in nonmuscle invasive MB49 cells (p <0.001). CONCLUSIONS: Results suggest that increased PPARγ controls inducible nitric oxide synthase expression at early tumor stages. However, regulation is lost at advanced tumor stages, when the increase in inducible nitric oxide synthase and the decrease in PPARγ seem to be associated with bladder cancer progression.


Assuntos
Óxido Nítrico Sintase Tipo II/fisiologia , PPAR gama/fisiologia , Neoplasias da Bexiga Urinária/etiologia , Animais , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Neoplasias da Bexiga Urinária/patologia
18.
Cancer Genet ; 205(4): 168-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559978

RESUMO

Bladder cancer is frequently associated with chromosomal abnormalities, and the complexity of karyotypes increases with tumor progression. The murine model MB49 is one of the most widely studied models of bladder cancer. We developed the invasive cell line MB49-I by successive in vivo passages of MB49 primary tumors. Because little is known about the chromosomal alterations of this model, our goal was to perform cytogenetic analyses of the MB49 and MB49-I lines. The karyotypes of both lines were analyzed by G-banding and fluorescence in situ hybridization techniques. Both lines were composed of two cell subpopulations, a diploid population, which was found mainly in the MB49 line, and the tetraploid population, which was found mainly in the MB49-I line. A translocation between chromosomes 5 and 9 and an isochromosome of chromosome 19 were observed in the subpopulations of both lines. New structural abnormalities and additional chromosomal imbalances were detected in the MB49-I line. Tumor progression in the MB49/MB49-I model was associated with a selection of polyploid cells with accompanying chromosomal abnormalities. This model may be advantageous for the study of the genetic changes associated with the progression of bladder cancer.


Assuntos
Linhagem Celular Tumoral , Aberrações Cromossômicas , Modelos Animais de Doenças , Neoplasias da Bexiga Urinária/genética , Animais , Bandeamento Cromossômico , Cromossomos de Mamíferos/genética , Análise Citogenética , Progressão da Doença , Hibridização in Situ Fluorescente , Cariotipagem , Camundongos , Deleção de Sequência , Translocação Genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
19.
PLoS One ; 5(10): e13571, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21042580

RESUMO

BACKGROUND: Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy.


Assuntos
Vacina BCG/imunologia , Modelos Animais de Doenças , Macrófagos Peritoneais/imunologia , Neoplasias da Bexiga Urinária/patologia , Animais , Diferenciação Celular , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fibroblastos/citologia , Fibroblastos/imunologia , Camundongos , Células NIH 3T3 , Óxido Nítrico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/imunologia
20.
J Urol ; 182(2): 749-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19539312

RESUMO

PURPOSE: We developed and characterized an orthotopic invasive bladder tumor model. MATERIAL AND METHODS: The MB49-I invasive bladder tumor cell line was obtained after 13 consecutive in vivo passages of primary tumor obtained by subcutaneous inoculation of MB49 bladder tumor cells in C57Bl/6J male mice. RESULTS: MB49-I tumor local invasiveness, tumor weight and spontaneous metastatic capacity were higher than in MB49 tumors. In MB49-I bladder tumors increased vimentin was observed, suggesting epithelial mesenchymal transition. In vitro the MB49-I cell line showed higher invasive properties associated with an increase in cathepsin B, metalloproteinase 9 and urokinase-type plasminogen activator proteolytic activities. Orthotopic bladder tumors induced by electrocautery of the bladder wall and subsequent instillation of MB49 and MB49-I bladder cancer cells generated superficial and invasive bladder tumors, respectively. CONCLUSIONS: The new murine bladder model described resembles human bladder disease, making it a useful tool for studying the molecular mechanisms of tumor progression and metastasis, and assaying antimetastatic and anti-invasive agents.


Assuntos
Catepsina B/fisiologia , Modelos Animais de Doenças , Neoplasias da Bexiga Urinária/patologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA