Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Rep ; 14(1): 14666, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918466

RESUMO

Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.


Assuntos
Desacetilase 6 de Histona , Mapas de Interação de Proteínas , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Fosforilação , Acetilação , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia
2.
Stem Cell Res Ther ; 15(1): 165, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867306

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have emerged as living biodrugs for myocardial repair and regeneration. Recent randomized controlled trials (RCTs) have reported that MSC-based therapy is safe and effective in heart failure patients; however, its dose-response relationship has yet to be established. We aimed to determine the optimal MSC dose for treating HF patients with reduced ejection fraction (EF) (HFrEF). METHODS: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook guidelines were followed. Four databases and registries, i.e., PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other websites, were searched for RCTs. Eleven RCTs with 1098 participants (treatment group, n = 606; control group, n = 492) were selected based on our inclusion/exclusion criteria. Two independent assessors extracted the data and performed quality assessments. The data from all eligible studies were plotted for death, major adverse cardiac events (MACE), left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and 6-minute walk distance (6-MWD) as safety, efficacy, and performance parameters. For dose-escalation assessment, studies were categorized as low-dose (< 100 million cells) or high-dose (≥ 100 million cells). RESULTS: MSC-based treatment is safe across low and high doses, with nonsignificant effects. However, low-dose treatment had a more significant protective effect than high-dose treatment. Subgroup analysis revealed the superiority of low-dose treatment in improving LVEF by 3.01% (95% CI; 0.65-5.38%) compared with high-dose treatment (-0.48%; 95% CI; -2.14-1.18). MSC treatment significantly improved the 6-MWD by 26.74 m (95% CI; 3.74-49.74 m) in the low-dose treatment group and by 36.73 m (95% CI; 6.74-66.72 m) in the high-dose treatment group. The exclusion of studies using ADRCs resulted in better safety and a significant improvement in LVEF from low- and high-dose MSC treatment. CONCLUSION: Low-dose MSC treatment was safe and superior to high-dose treatment in restoring efficacy and functional outcomes in heart failure patients, and further analysis in a larger patient group is warranted.


Assuntos
Insuficiência Cardíaca , Transplante de Células-Tronco Mesenquimais , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico , Humanos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/tratamento farmacológico , Transplante de Células-Tronco Mesenquimais/métodos , Volume Sistólico/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982313

RESUMO

Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/prevenção & controle , Qualidade de Vida , Psicoterapia , Biomarcadores , Fenótipo
4.
Mol Psychiatry ; 27(11): 4536-4549, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35902629

RESUMO

Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.


Assuntos
Transtorno Depressivo Maior , Ketamina , MicroRNAs , Camundongos , Animais , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , MicroRNAs/metabolismo , Biomarcadores , Epigênese Genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico
5.
Artigo em Inglês | MEDLINE | ID: mdl-35682057

RESUMO

Trauma exposure is one of the most important and prevalent risk factors for mental and physical ill-health. Prolonged or excessive stress exposure increases the risk of a wide variety of mental and physical symptoms, resulting in a condition known as post-traumatic stress disorder (PTSD). The diagnosis might be challenging due to the complex pathophysiology and co-existence with other mental disorders. The prime factor for PTSD development is exposure to a stressor, which variably, along with peritraumatic conditions, affects disease progression and severity. Additionally, many factors are thought to influence the response to the stressor, and hence reshape the natural history and course of the disease. With sufficient knowledge about the disease, preventive and intervenient methods can be implemented to improve the quality of life of the patients and to limit both the medical and economic burden of the disease. This literature review provides a highlight of up-to-date literature on traumatic stress, with a focus on causes or triggers of stress, factors that influence response to stress, disease burden, and the application of the social-ecological public health model of disease prevention. In addition, it addresses therapeutic aspects, ethnic differences in traumatic stress, and future perspectives, including potential biomarkers.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Saúde Pública , Qualidade de Vida , Fatores de Risco , Meio Social , Transtornos de Estresse Pós-Traumáticos/etiologia
6.
Genomics ; 114(2): 110280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124177

RESUMO

PURPOSE: The trabecular meshwork (TM) is situated in the most frontal part of the eye and is thought to play an important role in the regulation of the eye pressure. However, this tissue is rather difficult to harvest for research. The purpose of this study is therefore to integrate the existing gene expression data of the healthy TM to increase sample size and identify its signature genes and pathways. This provides a robust reference for the study of molecular disease processes and supports the selection of candidate target genes for new treatments. METHODS: A systematic search identified microarray data of healthy TM tissue. After quality control, datasets of low quality and deviating samples were excluded. Remaining individuals were jointly normalized and integrated into one database. The average gene expression of each tested gene over all individuals was calculated. The 25% genes with the highest average expression were identified as the most active genes in the healthy TM and used as input for pathway and network analysis. Additionally, ubiquitous pathways and genes were identified and excluded from the results. Lastly, we identified genes which are likely to be TM-specific. RESULTS: The gene expression data of 44 individuals, obtained from 18 datasets, were jointly normalized. Ubiquitous genes (n = 688) and ubiquitous pathways (n = 73) were identified and excluded. Following, 1882 genes and 211 pathways were identified as the signature genes and pathways of the healthy TM. Pathway analysis revealed multiple molecular processes of which some were already known to be active in the TM, for example extracellular matrix and elastic fiber formation. Forty-six candidate TM-specific genes were identified. These consist mainly of pseudogenes or novel transcripts of which the function is unknown. CONCLUSIONS: In this comprehensive meta-analysis we identified non-ubiquitous genes and pathways that form the signature of the functioning of the healthy TM. Additionally, 46 candidate TM-specific genes were identified. This method can also be used for other tissues that are difficult to obtain for study.


Assuntos
Matriz Extracelular , Malha Trabecular , Matriz Extracelular/genética , Humanos , Análise em Microsséries , Malha Trabecular/metabolismo
7.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33896623

RESUMO

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Assuntos
Transtorno Depressivo Maior , Anedonia , Animais , Ansiedade , Feminino , Masculino , Camundongos , Córtex Pré-Frontal , Caracteres Sexuais
8.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639084

RESUMO

Exposure to trauma is one of the most important and prevalent risk factors for mental and physical ill-health. Excessive or prolonged stress exposure increases the risk of a wide variety of mental and physical symptoms. However, people differ strikingly in their susceptibility to develop signs and symptoms of mental illness after traumatic stress. Post-traumatic stress disorder (PTSD) is a debilitating disorder affecting approximately 8% of the world's population during their lifetime, and typically develops after exposure to a traumatic event. Despite that exposure to potentially traumatizing events occurs in a large proportion of the general population, about 80-90% of trauma-exposed individuals do not develop PTSD, suggesting an inter-individual difference in vulnerability to PTSD. While the biological mechanisms underlying this differential susceptibility are unknown, epigenetic changes have been proposed to underlie the relationship between exposure to traumatic stress and the susceptibility to develop PTSD. Epigenetic mechanisms refer to environmentally sensitive modifications to DNA and RNA molecules that regulate gene transcription without altering the genetic sequence itself. In this review, we provide an overview of various molecular biological, biochemical and physiological alterations in PTSD, focusing on changes at the genomic and epigenomic level. Finally, we will discuss how current knowledge may aid us in early detection and improved management of PTSD patients.


Assuntos
Epigênese Genética , Epigenômica , Interação Gene-Ambiente , Predisposição Genética para Doença , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/patologia , Humanos , Fatores de Risco
9.
Neurobiol Aging ; 102: 178-187, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773368

RESUMO

Sphingolipids (SLs) are bioactive lipids involved in various important physiological functions. The SL pathway has been shown to be affected in several brain-related disorders, including Alzheimer's disease (AD). Recent evidence suggests that epigenetic dysregulation plays an important role in the pathogenesis of AD as well. Here, we use an integrative approach to better understand the relationship between epigenetic and transcriptomic processes in regulating SL function in the middle temporal gyrus of AD patients. Transcriptomic analysis of 252 SL-related genes, selected based on GO term annotations, from 46 AD patients and 32 healthy age-matched controls, revealed 103 differentially expressed SL-related genes in AD patients. Additionally, methylomic analysis of the same subjects revealed parallel hydroxymethylation changes in PTGIS, GBA, and ITGB2 in AD. Subsequent gene regulatory network-based analysis identified 3 candidate genes, that is, SELPLG, SPHK1 and CAV1 whose alteration holds the potential to revert the gene expression program from a diseased towards a healthy state. Together, this epigenomic and transcriptomic approach highlights the importance of SL-related genes in AD, and may provide novel biomarkers and therapeutic alternatives to traditionally investigated biological pathways in AD.


Assuntos
Doença de Alzheimer/genética , Epigênese Genética/genética , Redes Reguladoras de Genes/genética , Estudos de Associação Genética , Esfingolipídeos/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metilação , Esfingolipídeos/metabolismo , Esfingolipídeos/fisiologia , Lobo Temporal/metabolismo , Transcriptoma/genética
10.
Invest Ophthalmol Vis Sci ; 61(4): 24, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32305042

RESUMO

Purpose: To identify processes that contribute to corticosteroid-induced ocular hypertension and candidate target genes for treatment. Methods: A systematic search identified five human microarray datasets investigating the effect of dexamethasone versus a control medium on trabecular meshwork (TM) tissue. After thorough quality control, samples of low quality were removed, and the datasets were integrated. Additionally, a bovine RNA-sequencing dataset allowed to investigate differences in gene expression profiling between cows with and without corticosteroid-induced ocular hypertension (responders vs. nonresponders). The obtained datasets were used as input for parallel pathway analyses. Significantly changed pathways were clustered into functional categories and the results were further investigated. A network visualizing the differences between the responders and nonresponders was created. Results: Seven functional pathway clusters were found to be significantly changed in TM cells exposed to dexamethasone versus a control medium and in TM cells of responders versus nonresponders: collagen, extracellular matrix, adhesion, WNT-signaling, inflammation, adipogenesis, and glucose metabolism. In addition, cell cycle and senescence were only significantly changed in responders versus nonresponders. The network of the differential gene expression between responders and nonresponders shows many connections between the identified processes via shared genes. Conclusions: Nine functional pathway clusters synthesize the molecular response to dexamethasone exposure in TM cells and are likely to be involved in the pathogenesis of corticosteroid-induced ocular hypertension.


Assuntos
Proteínas de Ciclo Celular/genética , Dexametasona/farmacologia , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/fisiologia , Glucocorticoides/farmacologia , Hipertensão Ocular/induzido quimicamente , Malha Trabecular/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Hipertensão Ocular/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Malha Trabecular/metabolismo
11.
Cartilage ; 11(2): 203-220, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29629573

RESUMO

OBJECTIVE: Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN: We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS: Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS: The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.


Assuntos
Anel Fibroso/metabolismo , Disco Intervertebral/citologia , Núcleo Pulposo/metabolismo , Linhagem Celular , Condrócitos/metabolismo , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Humanos , Fenótipo
12.
Acta Ophthalmol ; 98(1): 48-57, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31197946

RESUMO

PURPOSE: Performing bioinformatics analyses using trabecular meshwork (TM) gene expression data in order to further elucidate the molecular pathogenesis of primary open-angle glaucoma (POAG), and to identify candidate target genes. METHODS: A systematic search in Gene Expression Omnibus and ArrayExpress was conducted, and quality control and preprocessing of the data was performed with ArrayAnalysis.org. Molecular pathway overrepresentation analysis was performed with PathVisio using pathway content from three pathway databases: WikiPathways, KEGG and Reactome. In addition, Gene Ontology (GO) analysis was performed on the gene expression data. The significantly changed pathways were clustered into functional categories which were combined into a network of connected genes. RESULTS: Ninety-two significantly changed pathways were clustered into five functional categories: extracellular matrix (ECM), inflammation, complement activation, senescence and Rho GTPase signalling. ECM included pathways involved in collagen, actin and cell-matrix interactions. Inflammation included pathways entailing NF-κB and arachidonic acid. The network analysis showed that several genes overlap between the inflammation cluster on the one hand, and the ECM, complement activation and senescence clusters on the other hand. GO analysis, identified additional clusters, related to development and corticosteroids. CONCLUSION: This study provides an overview of the processes involved in the molecular pathogenesis of POAG in the TM. The results show good face validity and confirm findings from histological, biochemical, genome-wide association and transcriptomics studies. The identification of known points of action for drugs, such as Rho GTPase, arachidonic acid, NF-κB, prostaglandins and corticosteroid clusters, supports the value of this approach to identify potential drug targets.


Assuntos
Colágeno/genética , Biologia Computacional/métodos , Matriz Extracelular/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Malha Trabecular/metabolismo , Actinas/biossíntese , Actinas/genética , Colágeno/biossíntese , DNA/genética , Matriz Extracelular/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Humanos
13.
Clin Epigenetics ; 11(1): 164, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775875

RESUMO

BACKGROUND: Late-onset Alzheimer's disease (AD) is a complex multifactorial affliction, the pathogenesis of which is thought to involve gene-environment interactions that might be captured in the epigenome. The present study investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD. RESULTS: We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35) in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (- 3.76% 5mC, pSidák = 1.07E-06), CHRNB1 (+ 1.46% 5hmC, pSidák = 4.01E-04), RHBDF2 (- 3.45% UC, pSidák = 4.85E-06), and C3 (- 1.20% UC, pSidák = 1.57E-03). In parallel, in an independent cohort, we compared the blood methylome of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pSidák = 7.14E-04). CONCLUSIONS: The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel therapeutic strategies in AD.


Assuntos
5-Metilcitosina/análogos & derivados , Doença de Alzheimer/genética , Metilação de DNA , Lobo Temporal/química , 5-Metilcitosina/análise , 5-Metilcitosina/sangue , 5-Metilcitosina/metabolismo , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Química Encefálica , Progressão da Doença , Epigênese Genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Ocitocina/genética , Receptores Nicotínicos/genética
14.
Front Genet ; 10: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30847002

RESUMO

Pathway and network approaches are valuable tools in analysis and interpretation of large complex omics data. Even in the field of rare diseases, like Rett syndrome, omics data are available, and the maximum use of such data requires sophisticated tools for comprehensive analysis and visualization of the results. Pathway analysis with differential gene expression data has proven to be extremely successful in identifying affected processes in disease conditions. In this type of analysis, pathways from different databases like WikiPathways and Reactome are used as separate, independent entities. Here, we show for the first time how these pathway models can be used and integrated into one large network using the WikiPathways RDF containing all human WikiPathways and Reactome pathways, to perform network analysis on transcriptomics data. This network was imported into the network analysis tool Cytoscape to perform active submodule analysis. Using a publicly available Rett syndrome gene expression dataset from frontal and temporal cortex, classical enrichment analysis, including pathway and Gene Ontology analysis, revealed mainly immune response, neuron specific and extracellular matrix processes. Our active module analysis provided a valuable extension of the analysis prominently showing the regulatory mechanism of MECP2, especially on DNA maintenance, cell cycle, transcription, and translation. In conclusion, using pathway models for classical enrichment and more advanced network analysis enables a more comprehensive analysis of gene expression data and provides novel results.

15.
PLoS One ; 13(4): e0193515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617380

RESUMO

Genome-wide association studies (GWAS) have become a common method for discovery of gene-disease relationships, in particular for complex diseases like Type 2 Diabetes Mellitus (T2DM). The experience with GWAS analysis has revealed that the genetic risk for complex diseases involves cumulative, small effects of many genes and only some genes with a moderate effect. In order to explore the complexity of the relationships between T2DM genes and their potential function at the process level as effected by polymorphism effects, a secondary analysis of a GWAS meta-analysis is presented. Network analysis, pathway information and integration of different types of biological information such as eQTLs and gene-environment interactions are used to elucidate the biological context of the genetic variants and to perform an analysis based on data visualization. We selected a T2DM dataset from a GWAS meta-analysis, and extracted 1,971 SNPs associated with T2DM. We mapped 580 SNPs to 360 genes, and then selected 460 pathways containing these genes from the curated collection of WikiPathways. We then created and analyzed SNP-gene and SNP-gene-pathway network modules in Cytoscape. A focus on genes with robust connections to pathways permitted identification of many T2DM pertinent pathways. However, numerous genes lack literature evidence of association with T2DM. We also speculate on the genes in specific network structures obtained in the SNP-gene network, such as gene-SNP-gene modules. Finally, we selected genes relevant to T2DM from our SNP-gene-pathway network, using different sources that reveal gene-environment interactions and eQTLs. We confirmed functions relevant to T2DM for many genes and have identified some-LPL and APOB-that require further validation to clarify their involvement in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Ontologia Genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Locos de Características Quantitativas
16.
Nucleic Acids Res ; 46(D1): D661-D667, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136241

RESUMO

WikiPathways (wikipathways.org) captures the collective knowledge represented in biological pathways. By providing a database in a curated, machine readable way, omics data analysis and visualization is enabled. WikiPathways and other pathway databases are used to analyze experimental data by research groups in many fields. Due to the open and collaborative nature of the WikiPathways platform, our content keeps growing and is getting more accurate, making WikiPathways a reliable and rich pathway database. Previously, however, the focus was primarily on genes and proteins, leaving many metabolites with only limited annotation. Recent curation efforts focused on improving the annotation of metabolism and metabolic pathways by associating unmapped metabolites with database identifiers and providing more detailed interaction knowledge. Here, we report the outcomes of the continued growth and curation efforts, such as a doubling of the number of annotated metabolite nodes in WikiPathways. Furthermore, we introduce an OpenAPI documentation of our web services and the FAIR (Findable, Accessible, Interoperable and Reusable) annotation of resources to increase the interoperability of the knowledge encoded in these pathways and experimental omics data. New search options, monthly downloads, more links to metabolite databases, and new portals make pathway knowledge more effortlessly accessible to individual researchers and research communities.


Assuntos
Bases de Dados de Compostos Químicos , Metabolômica , Animais , Curadoria de Dados , Mineração de Dados , Bases de Dados de Compostos Químicos/normas , Bases de Dados Genéticas , Humanos , Redes e Vias Metabólicas , Controle de Qualidade , Ferramenta de Busca , Software
17.
Front Physiol ; 9: 1841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627105

RESUMO

Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique nature due to its ability to regulate both glucose and lipid metabolic pathways. It is characterized as an important molecular player of insulin induced nutrient storage and utilization pathway during fasting to re-feeding metabolic transition. Several studies have contributed to increase our knowledge regarding its function and mechanism of action. Moreover, its altered expression levels have been observed in Insulin Resistance, Diabetes Mellitus (Types I & II) and Non Alcohlic Fatty Liver Disease emphasizing its assessment as a drug target. However, there is still a great deal of information that remains to be investigated including its associated biological processes, partner proteins in these processes, its regulators and its association with metabolic pathogenesis. In the current study, the analysis of a transcriptomic data set was performed for functional assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network Analysis coupled with pathway analysis tools was performed to identify genes that are significantly co-expressed with ANGPTL8 in liver and investigate their presence in biological pathways. Gene ontology term enrichment analysis was performed to select the gene ontology classes that over-represent the hepatic ANGPTL8-co-expressed genes. Moreover, the presence of diabetes linked SNPs within the genes set co-expressed with ANGPTL8 was investigated. The co-expressed genes of ANGPTL8 identified in this study (n = 460) provides narrowed down list of molecular targets which are either co-regulated with it and/or might be regulation partners at different levels of interaction. These results are coherent with previously demonstrated roles and regulators of ANGPTL8. Specifically, thirteen co-expressed genes (MAPK8, CYP3A4, PIK3R2, PIK3R4,PRKAB2, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, and RAPGEF1) are also present in the literature curated pathway of ANGPTL8 (WP3915). Moreover, the gene-SNP analysis of highly associated biological processes with ANGPTL8 revealed significant genetic signals associated to Diabetes Mellitus and similar phenotypic traits. It provides meaningful insights on the influencing genes involved and co-expressed in these pathways. Findings of this study have implications in functional characterization of ANGPTL8 with emphasis on the identified genes and pathways and their possible involvement in the pathogenesis of Diabetes Mellitus and Insulin Resistance.

18.
Genomics ; 109(5-6): 408-418, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28684091

RESUMO

ANGPTL8 (Angiopoietin-like protein 8) is a newly identified hormone emerging as a novel drug target for treatment of diabetes mellitus and dyslipidemia due to its unique metabolic nature. With increasing number of studies targeting the regulation of ANGPTL8, integration of their findings becomes indispensable. This study has been conducted with the aim to collect, analyze, integrate and visualize the available knowledge in the literature about ANGPTL8 and its regulation. We utilized this knowledge to construct a regulatory pathway of ANGPTL8 which is available at WikiPathways, an open source pathways database. It allows us to visualize ANGPTL8's regulation with respect to other genes/proteins in different pathways helping us to understand the complex interplay of novel hormones/genes/proteins in metabolic disorders. To the best of our knowledge, this is the first attempt to present an integrated pathway view of ANGPTL8's regulation and its associated pathways and is important resource for future omics-based studies.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Proteína 8 Semelhante a Angiopoietina , Animais , Proliferação de Células , Células Cultivadas , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Transdução de Sinais , Navegador
19.
BMC Bioinformatics ; 16: 267, 2015 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-26298294

RESUMO

BACKGROUND: Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. RESULTS: We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. CONCLUSIONS: PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.


Assuntos
Biomarcadores Tumorais/genética , Gráficos por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Software , Animais , Automação , Ciclofosfamida , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Neoplasias/tratamento farmacológico , Fluxo de Trabalho
20.
Hum Reprod ; 30(10): 2303-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202924

RESUMO

STUDY QUESTION: Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? SUMMARY ANSWER: Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes involved in apoptosis, protein degradation, metabolism and cell-cycle regulation. WHAT IS KNOWN ALREADY: Several human studies have shown an effect of culture medium on embryo development, pregnancy outcome and birthweight. However, the underlying mechanisms in human embryos are still unknown. In animal models of human development, it has been demonstrated that culture of preimplantation embryos in vitro affects gene expression. In humans, it has been found that culture medium affects gene expression of cryopreserved embryos that, after thawing, were cultured in two different media for 2 more days. STUDY DESIGN, SIZE, DURATION: In a multicenter trial, women were randomly assigned to two culture medium groups [G5 and human tubal fluid (HTF)]. Data on embryonic development were collected for all embryos. In one center, embryos originating from two pronuclei (2PN) zygotes that were not selected for transfer or cryopreservation on Day 2 or 3 because of lower morphological quality, were cultured until Day 6 and used in this study, if couples consented. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ten blastocysts each from the G5 and HTF study groups, matched for fertilization method, maternal age and blastocyst quality, were selected and their mRNA was isolated and amplified. Embryos were examined individually for genome-wide gene expression using Agilent microarrays and PathVisio was used to identify the pathways that showed a culture medium-dependent activity. MAIN RESULTS AND THE ROLE OF CHANCE: Expression of 951 genes differed significantly (P < 0.01) between the G5 and HTF groups. Eighteen pathways, involved in apoptosis, metabolism, protein processing and cell-cycle regulation, showed a significant overrepresentation of differentially expressed genes. The DNA replication, G1 to S cell-cycle control and oxidative phosphorylation pathways were up-regulated in the G5 group compared with the HTF group. This is in agreement with the morphological assessment of the 1527 embryos (originating from 2PN zygotes), which showed that embryos consisted of more cells on Day 2 (3.73 ± 1.30 versus 3.40 ± 1.35, P < 0.001) and Day 3 (7.00 ± 2.41 versus 5.84 ± 2.36, P < 0.001) in the G5 group when compared with the HTF group. Furthermore, the implantation rate was significantly higher in the G5 group compared with the HTF group (26.7% versus 14.7%, P = 0.002) after transfer on the second or the third day after fertilization. LIMITATIONS, REASONS FOR CAUTION: Despite careful matching of the embryos, it cannot be excluded that the differences observed between the study groups are caused by factors that we did not investigate. Extrapolation of these results to embryos used for transfer demands caution as in the present study embryos that were not selected for either embryo transfer or cryopreservation have been used for the culture experiment until Day 6. WIDER IMPLICATIONS OF THE FINDINGS: This study shows that gene expression in human preimplantation embryos is altered by the culture medium used during IVF treatment and provides insight into the biological pathways that are affected. Whether these changes in gene expression have any long-term effects on children born after IVF remains unknown. However, it is possible that early adaptations of the preimplantation embryo to its environment persist during fetal and post-natal development. STUDY FUNDING/COMPETING INTERESTS: No funding and no competing interests declared. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Blastocisto/citologia , Meios de Cultura/química , Técnicas de Cultura Embrionária , Fertilização in vitro/métodos , Transcriptoma , Adulto , Animais , Apoptose , Ciclo Celular , Criopreservação , Implantação do Embrião , Transferência Embrionária/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA