Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(7): 2674-2681, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35312324

RESUMO

Terahertz (THz) plasma oscillations represent a potential path to implement ultrafast electronic devices and circuits. Here, we present an approach to generate on-chip THz signals that relies on plasma-wave stabilization in nanoscale transistors with specific structural asymmetry. A hydrodynamic treatment shows how the transistor asymmetry supports plasma-wave amplification, giving rise to pronounced negative differential conductance (NDC). A demonstration of these behaviors is provided in InGaAs high-mobility transistors, which exhibit NDC in accordance with their designed asymmetry. The NDC onsets once the drift velocity in the channel reaches a threshold value, triggering the initial plasma instability. We also show how this feature can be made to persist beyond room temperature (to at least 75 °C), when the gating is configured to facilitate a transition between the hydrodynamic and ballistic regimes (of electron-electron transport). Our findings represent a significant step forward for efforts to develop active components for THz electronics.


Assuntos
Transistores Eletrônicos
2.
Opt Express ; 27(23): 33537-33542, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878420

RESUMO

We report the false appearance of dispersion in non-dispersive materials when measured by terahertz time-domain spectroscopy. This occurs when the material is measured in reflection geometry and has a bulk metal interface opposite to the incident interface, for example, when a substrate is supported by a metal stage with the THz light incident on it from above. We explain this effect in terms of the frequency-dependent response of the material when it is represented by a shorted transmission line model.

3.
Opt Express ; 26(2): 1697-1702, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402041

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) relies heavily on knowing precisely the thickness or refractive index of a material. In practice, one of these values is assumed to be known, or their product is numerically optimized to converge on suitable values. Both approaches are prone to errors and may mask some real features or properties of the material being studied. To eliminate these errors, we use THz-TDS in reflection geometry to accurately and independently determine both thickness and refractive index by illuminating the step-edge of a substrate atop a metal stage. This method relies solely on the relative time delay among three reflected pulses, and therefore forgoes the need for optimization or assumption of substrate parameters.

4.
RSC Adv ; 8(4): 1725-1729, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542568

RESUMO

Transferring graphene from copper foil to a target substrate should ideally be a nondestructive process, but cracks, holes, and wrinkles have proved difficult to prevent. Here we report a method in which we use a commercially available copolymer in addition to poly(methylmethacrylate) (PMMA) to obtain 99.8% continuous centimeter-scale transferred graphene. Our findings are based on characterization using Raman spectroscopy, quantitative image analysis, scanning electron microscopy, and terahertz time-domain spectroscopy. Compared to conventional methods, this copolymer-assisted approach not only results in fewer holes, but also effectively eliminates cracks and wrinkles. We attribute this to a more thorough relaxation of the initially deposited PMMA by solvent contained in the thicker copolymer layer. This results in improved contact at the PMMA-graphene interface before removal of the underlying copper substrate.

5.
ACS Appl Mater Interfaces ; 7(18): 9702-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25872933

RESUMO

The intrinsic p-type behavior of graphene field-effect transistors (FETs) under ambient conditions poses a fundamental challenge for the assembly of complex electronic devices, such as integrated circuits. In this work, we present a protocol for tunable n-type doping of graphene FETs via poly(vinyl alcohol) (PVA) coating. Using graphene grown by alcohol catalytic chemical vapor deposition, functionalization of the surface by this hydroxyl anion-rich polymer results in an evolution of the FETs from p-type to ambipolar or n-type even under ambient air conditions. The doping level of graphene is strongly related to the PVA film coating parameters, such as solution concentration, hardening temperature, and hardening time. This PVA coating proves to be a simple and stable approach to tuning the Dirac point and doping level of graphene, which is highly desirable and of great significance for the future of graphene-based electronic devices.

6.
ACS Nano ; 8(11): 11631-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25363605

RESUMO

Using ethanol as the carbon source, self-limiting growth of AB-stacked bilayer graphene (BLG) has been achieved on Cu via an equilibrium chemical vapor deposition (CVD) process. We found that during this alcohol catalytic CVD (ACCVD) a source-gas pressure range exists to break the self-limitation of monolayer graphene on Cu, and at a certain equilibrium state it prefers to form uniform BLG with a high surface coverage of ∼94% and AB-stacking ratio of nearly 100%. More importantly, once the BLG is completed, this growth shows a self-limiting manner, and an extended ethanol flow time does not result in additional layers. We investigate the mechanism of this equilibrium BLG growth using isotopically labeled (13)C-ethanol and selective surface aryl functionalization, and results reveal that during the equilibrium ACCVD process a continuous substitution of graphene flakes occurs to the as-formed graphene and the BLG growth follows a layer-by-layer epitaxy mechanism. These phenomena are significantly in contrast to those observed for previously reported BLG growth using methane as precursor.

7.
Nanoscale ; 6(3): 1525-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24322271

RESUMO

The observation of one-dimensional N2 inside single-walled carbon nanotubes raises the questions, how are the N2 molecules formed and how do they manage to make their way to this peculiar place? We have used N(15) and C(13) isotope labeled acetonitrile during the synthesis of single-walled carbon nanotubes to investigate this process. The isotope shifts of phonons and vibrons are observed by Raman spectroscopy and X-ray absorption. We identify the catalytic decomposition of acetonitrile as the initial step in the reaction pathway to single-walled carbon nanotubes containing encapsulated N2.

8.
Nanoscale ; 5(14): 6530-7, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23760441

RESUMO

Here we present CVD growth of graphene on Ni and investigate the growth mechanism using isotopically labeled (13)C-ethanol as the precursor. Results show that during low-pressure alcohol catalytic CVD (LP-ACCVD), a growth time of less than 30 s yields graphene films with high surface coverage (>80%). Moreover, when isotopically labeled ethanol precursors were sequentially introduced, Raman mapping revealed that both (12)C and (13)C graphene flakes exist. This shows that even at high temperature (∼900 °C) the graphene flakes form independently, suggesting a different growth mechanism for ethanol-derived graphene on Ni from the segregation process for methane-derived graphene. We interpret this growth mechanism using a direct surface-adsorptive growth model in which small carbon fragments catalyzed from ethanol decomposition products first nucleate at metal step edges or grain boundaries to initiate graphene growth, and then expand over the entire metal surface.

9.
ACS Nano ; 7(4): 3095-103, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23458323

RESUMO

We propose a unique experimental technique in which isotopically labeled ethanol, e.g., 12CH3-13CH2-OH, is used to trace the carbon atoms during the formation of single-walled carbon nanotubes (SWNTs) by chemical vapor deposition (CVD). The proportion of 13C is determined from Raman spectra of the obtained SWNTs, yielding the respective contribution of ethanol's two different carbon atoms to SWNT formation. Surprisingly, the carbon away from the hydroxyl group is preferably incorporated into the SWNT structure, and this preference is significantly affected by growth temperature, presence of secondary catalyst metal species such as Mo, and even by the substrate material. These experiments provide solid evidence confirming that the active carbon source is not limited to products of gas-phase decomposition such as ethylene and acetylene, but ethanol itself is arriving at and reacting with the metal catalyst particles. Furthermore, even the substrate or other catalytically inactive species directly influences the formation of SWNTs, possibly by changing the local environment around the catalyst or even the reaction pathway of SWNT formation. These unexpected effects, which are inaccessible by conventional techniques, paint a clearer picture regarding the decomposition and bond breaking process of the ethanol precursor during the entire CVD process and how this might influence the quality of the obtained SWNTs.


Assuntos
Cristalização/métodos , Etanol/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
ACS Nano ; 7(3): 2205-11, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23469892

RESUMO

Changing the carbon feedstock from pure ethanol to a 5 vol % mixture of acetonitrile in ethanol during the growth of vertically aligned single-walled carbon nanotubes (SWNTs) reduces the mean diameter of the emerging SWNTs from approximately 2 to 1 nm. We show this feedstock-dependent change is reversible and repeatable, as demonstrated by multilayered vertically aligned SWNT structures. The reversibility of this process and lack of necessity for catalyst modification provides insight into the role of nitrogen in reducing the SWNT diameter.

11.
ACS Nano ; 6(8): 7472-9, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22812723

RESUMO

We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.


Assuntos
Cobalto/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanomedicina , Tamanho da Partícula , Propriedades de Superfície
12.
J Nanosci Nanotechnol ; 12(1): 370-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22523989

RESUMO

In this study, we systematically investigated the influence of catalyst preparation procedures on the mean diameter of single-walled carbon nanotubes (SWNTs) synthesized by the alcohol catalytic chemical vapor deposition (ACCVD) process. It was found that the SWNT diameter is dependent upon both reduction temperature and time, with lower reduction temperature and/or shorter reduction time resulting in smaller diameter SWNTs. The morphology of the SWNTs also changed from vertically aligned to randomly oriented when the reduction temperature was below 500 degrees C. We also found that introducing a small amount of water during the catalyst reduction stage significantly decreased the mean diameter of the SWNTs. Lastly, we report on the use of a new binary catalyst system in which rhodium was combined with cobalt. This new Co/Rh combination produced SWNTs of smaller diameter than the conventional Co/Mo catalyst.


Assuntos
Cristalização/métodos , Gases/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 10(6): 3901-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20355387

RESUMO

In this study we examine catalyst preparation and chemical vapor deposition (CVD) parameters related to synthesis of single-walled carbon nanotubes (SWNTs) by alcohol catalytic CVD. We show that modifying the catalyst recipe considerably changes the average SWNT diameter, and vertically aligned arrays with an average diameter of 1.5 nm were obtained. The height of vertically aligned SWNT arrays can be significantly enhanced by surface modification of the substrate prior to dip-coating, although this produces SWNTs with larger diameters at the root of the array. We demonstrate patterned growth by combining this method with suppression of SWNT synthesis by formation of a hydrophobic surface. We also consider the effects of ethanol flow rate and thermal decomposition on the chemical environment at the substrate. The growth process is considerably altered by the extent of ethanol decomposition, with sudden termination of the growth occurring in the extreme low-flow (complete decomposition) case.

14.
J Am Chem Soc ; 131(30): 10344-5, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19722609

RESUMO

In the liquid-based dip-coating, the hydrophilicity of a Si/SiO(2) substrate is found to be critical for the successful deposition of catalyst and hence the growth of single-walled carbon nanotubes (SWNTs). When the surface is functionalized by a self-assembled monolayer (SAM) and becomes hydrophobic, no catalyst remains and no SWNT grows. This concept can be utilized to localize the growth of SWNTs at designated regions where SAMs were selectively removed by, e.g., UV or electron beam. Patterned high-quality as-grown SWNTs with a potential line width of approximately 10 nm can be obtained.

15.
J Nanosci Nanotechnol ; 8(11): 6093-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198350

RESUMO

An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.


Assuntos
Cristalização/métodos , Modelos Químicos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Opt Lett ; 32(11): 1399-401, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17546134

RESUMO

An all-fiber passive laser mode locking is realized with a vertically aligned single-walled carbon nanotube film that can be transferred onto an arbitrary substrate using only hot water. A D-shaped fiber is employed as the substrate for the evanescent field interaction of propagating light with the nanotubes. The scheme highlights the efficient interaction achieved by the nanotube alignment as well as the dramatically simplified device preparation process. The demonstrated pulsed laser output has 2.9 nm of spectral full width at half-maximum and a 20.8 MHz repetition rate.

17.
Phys Rev Lett ; 98(6): 067401, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358983

RESUMO

We have studied the optical transition energies of single-wall carbon nanotubes over broad diameter (0.7-2.3 nm) and energy (1.26-2.71 eV) ranges, using their radial breathing mode Raman spectra. We establish the diameter and chiral angle dependence of the poorly studied third and fourth optical transitions in semiconducting tubes. Comparative analysis between the higher lying transitions and the first and second transitions show two different diameter scalings. Quantum mechanical calculations explain the result showing strongly bound excitons in the first and second transitions and a delocalized electron wave function in the third transition.

18.
Phys Rev Lett ; 94(8): 087402, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783929

RESUMO

Anisotropic optical absorption properties of single-walled carbon nanotubes (SWNTs) are determined from a vertically aligned SWNT film for 0.5-6 eV. Absorption peaks at 4.5 and 5.25 eV are found to exhibit remarkable polarization dependence and have relevance to optical properties of graphite. A method for determining a nematic order parameter for an aligned SWNT film based on the collinear absorption peak at 4.5 eV is presented, followed by the determination of the optical absorption cross section.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA