Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37067965

RESUMO

Humans are able to learn to recognize new objects even from a few examples. In contrast, training deep-learning-based object detectors requires huge amounts of annotated data. To avoid the need to acquire and annotate these huge amounts of data, few-shot object detection (FSOD) aims to learn from few object instances of new categories in the target domain. In this survey, we provide an overview of the state of the art in FSOD. We categorize approaches according to their training scheme and architectural layout. For each type of approach, we describe the general realization as well as concepts to improve the performance on novel categories. Whenever appropriate, we give short takeaways regarding these concepts in order to highlight the best ideas. Eventually, we introduce commonly used datasets and their evaluation protocols and analyze the reported benchmark results. As a result, we emphasize common challenges in evaluation and identify the most promising current trends in this emerging field of FSOD.

2.
J Phys Condens Matter ; 33(8): 084005, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33202401

RESUMO

We present a novel deep learning (DL) approach to produce highly accurate predictions of macroscopic physical properties of solid solution binary alloys and magnetic systems. The major idea is to make use of the correlations between different physical properties in alloy systems to improve the prediction accuracy of neural network (NN) models. We use multitasking NN models to simultaneously predict the total energy, charge density and magnetic moment. These physical properties mutually serve as constraints during the training of the multitasking NN, resulting in more reliable DL models because multiple physics properties are correctly learned by a single model. Two binary alloys, copper-gold (CuAu) and iron-platinum (FePt), were studied. Our results show that once the multitasking NN's are trained, they can estimate the material properties for a specific configuration hundreds of times faster than first-principles density functional theory calculations while retaining comparable accuracy. We used a simple measure based on the root-mean-squared errors to quantify the quality of the NN models, and found that the inclusion of charge density and magnetic moment as physical constraints leads to more stable models that exhibit improved accuracy and reduced uncertainty for the energy predictions.

3.
Nat Commun ; 11(1): 892, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060263

RESUMO

Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians. The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems.

4.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012943

RESUMO

In order to meet the increasing demands of mobile service robot applications, a dedicated perception module is an essential requirement for the interaction with users in real-world scenarios. In particular, multi sensor fusion and human re-identification are recognized as active research fronts. Through this paper we contribute to the topic and present a modular detection and tracking system that models position and additional properties of persons in the surroundings of a mobile robot. The proposed system introduces a probability-based data association method that besides the position can incorporate face and color-based appearance features in order to realize a re-identification of persons when tracking gets interrupted. The system combines the results of various state-of-the-art image-based detection systems for person recognition, person identification and attribute estimation. This allows a stable estimate of a mobile robot's user, even in complex, cluttered environments with long-lasting occlusions. In our benchmark, we introduce a new measure for tracking consistency and show the improvements when face and appearance-based re-identification are combined. The tracking system was applied in a real world application with a mobile rehabilitation assistant robot in a public hospital. The estimated states of persons are used for the user-centered navigation behaviors, e.g., guiding or approaching a person, but also for realizing a socially acceptable navigation in public environments.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Reabilitação/instrumentação , Robótica/instrumentação , Robótica/métodos , Benchmarking , Cor , Exercício Físico , Face , Hospitais Públicos , Humanos , Distribuição Normal , Postura , Probabilidade , Interface Usuário-Computador , Caminhada
5.
J Phys Condens Matter ; 31(27): 273002, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30917351

RESUMO

In this review, we will focus on the recent development of the order-disorder transition in metallic materials. The past decades have witnessed fast development in the first-principles methodologies and their applications to ordering transitions in multi-component alloys, particularly the high-entropy alloys. The driving force for the proceedings comes from (i) the advance of algorithms and increasingly cheaper hardware, and also (ii) the great passion to model alloys with increasing number of components. The review starts with a brief introduction of the history for the ordering transitions. More detailed scientific proceedings prior to the 1970s had been well summarized in Krivoglaz and Smirnov (1965 The Theory of Order-Disorder in Alloys (New York: Elsevier)) and Stoloff and Davies (1968 Prog. Mater. Sci. 13 1-84). In the second part, the methods to study the ordering transitions, primarily on the theoretic methods are introduced. These will include (i) KKR-CPA method and supercell methods for energetic calculations; and (ii) thermodynamic and statistical methods to compute the transition temperatures. The third part will focus on representative applications in alloys, including our own work and many others. This part supplies the primary information of this review to the readers. The fourth part will summarize the connections between ordering transitions and broader physical properties (e.g. the mechanical properties). In the last part, some concluding remarks and perspectives will be given.

7.
Sci Rep ; 7: 43482, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256544

RESUMO

Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These results suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes.

8.
Nature ; 542(7639): 75-79, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28150758

RESUMO

Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

9.
J Phys Condens Matter ; 28(35): 355501, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27388858

RESUMO

One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this paper we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. The code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potential effects in group V elements and noble metals are thoroughly investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA