Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370800

RESUMO

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.

2.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405865

RESUMO

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.

3.
Transl Psychiatry ; 11(1): 537, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663783

RESUMO

The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Epilepsia , Animais , Transtorno do Espectro Autista/genética , Comorbidade , Hipocampo , Humanos , Interneurônios , Camundongos , Neuropilina-2/genética
4.
Am J Physiol Cell Physiol ; 318(2): C380-C391, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913702

RESUMO

Children surviving cancer and chemotherapy are at risk for adverse health events including heart failure that may be delayed by years. Although the early effects of doxorubicin-induced cardiotoxicity may be attributed to a direct effect on the cardiomyocytes, the mechanisms underlying the delayed or late effects (8-20 yr) are unknown. The goal of this project was to develop a model of late-onset doxorubicin-induced cardiotoxicity to better delineate the underlying pathophysiology responsible. The underlying hypothesis was that doxorubicin-induced "late-onset cardiotoxicity" was the result of mitochondrial dysfunction leading to cell failure and death. Wistar rats, 3-4 wk of age, were randomly assigned to vehicle or doxorubicin injection groups (1-45 mg/kg). Cardiovascular function was unaltered at the lower dosages (1-15 kg/mg), but beginning at 6 mo after injection significant cardiac degradation was observed in the 45 mg/kg group. Doxorubicin significantly increased myocardial mitochondrial DNA (mtDNA) damage. In contrast, in isolated c-kit left ventricular (LV) cells, doxorubicin treatment did not increase mtDNA damage. Biomarkers of senescence within the LV were significantly increased, suggesting accelerated aging of the LV. Doxorubicin also significantly increased LV histamine content suggestive of mast cell activation. With the use of flow cytometry, a significant expansion of the c-kit and stage-specific embryonic antigen 1 cell populations within the LV were concomitant with significant decreases in the circulating peripheral blood population of these cells. These results are consistent with the concept that doxorubicin induced significant damage to the cardiomyocyte population and that although the heart attempted to compensate it eventually succumbed to an inability for self-repair.


Assuntos
Cardiotoxicidade/patologia , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Animais , Linhagem Celular , DNA Mitocondrial/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/patologia , Ratos , Ratos Wistar
5.
J Neurosci ; 39(45): 8845-8859, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31541021

RESUMO

The striatum represents the main input structure of the basal ganglia, receiving massive excitatory input from the cortex and the thalamus. The development and maintenance of cortical input to the striatum is crucial for all striatal function including many forms of sensorimotor integration, learning, and action control. The molecular mechanisms regulating the development and maintenance of corticostriatal synaptic transmission are unclear. Here we show that the guidance cue, Semaphorin 3F and its receptor Neuropilin 2 (Nrp2), influence dendritic spine maintenance, corticostriatal short-term plasticity, and learning in adult male and female mice. We found that Nrp2 is enriched in adult layer V pyramidal neurons, corticostriatal terminals, and in developing and adult striatal spiny projection neurons (SPNs). Loss of Nrp2 increases SPN excitability and spine number, reduces short-term facilitation at corticostriatal synapses, and impairs goal-directed learning in an instrumental task. Acute deletion of Nrp2 selectively in adult layer V cortical neurons produces a similar increase in the number of dendritic spines and presynaptic modifications at the corticostriatal synapse in the Nrp2-/- mouse, but does not affect the intrinsic excitability of SPNs. Furthermore, conditional loss of Nrp2 impairs sensorimotor learning on the accelerating rotarod without affecting goal-directed instrumental learning. Collectively, our results identify Nrp2 signaling as essential for the development and maintenance of the corticostriatal pathway and may shed novel insights on neurodevelopmental disorders linked to the corticostriatal pathway and Semaphorin signaling.SIGNIFICANCE STATEMENT The corticostriatal pathway controls sensorimotor, learning, and action control behaviors and its dysregulation is linked to neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here we demonstrate that Neuropilin 2 (Nrp2), a receptor for the axon guidance cue semaphorin 3F, has important and previously unappreciated functions in the development and adult maintenance of dendritic spines on striatal spiny projection neurons (SPNs), corticostriatal short-term plasticity, intrinsic physiological properties of SPNs, and learning in mice. Our findings, coupled with the association of Nrp2 with ASD in human populations, suggest that Nrp2 may play an important role in ASD pathophysiology. Overall, our work demonstrates Nrp2 to be a key regulator of corticostriatal development, maintenance, and function, and may lead to better understanding of neurodevelopmental disease mechanisms.


Assuntos
Córtex Cerebral/metabolismo , Condicionamento Operante , Corpo Estriado/metabolismo , Neuropilina-2/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/fisiologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neuropilina-2/genética , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia
7.
Am J Physiol Heart Circ Physiol ; 314(1): H68-H81, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939651

RESUMO

Notch receptor signaling is active during cardiac development and silenced in myocytes after birth. Conversely, outward K+ Kv currents progressively appear in postnatal myocytes leading to shortening of the action potential (AP) and acquisition of the mature electrical phenotype. In the present study, we tested the possibility that Notch signaling modulates the electrical behavior of cardiomyocytes by interfering with Kv currents. For this purpose, the effects of Notch receptor activity on electrophysiological properties of myocytes were evaluated using transgenic mice with inducible expression of the Notch1 intracellular domain (NICD), the functional fragment of the activated Notch receptor, and in neonatal myocytes after inhibition of the Notch transduction pathway. By patch clamp, NICD-overexpressing cells presented prolonged AP duration and reduced upstroke amplitude, properties that were coupled with reduced rapidly activating Kv and fast Na+ currents, compared with cells obtained from wild-type mice. In cultured neonatal myocytes, inhibition of the proteolitic release of NICD with a γ-secretase antagonist increased transcript levels of the Kv channel-interacting proteins 2 (KChIP2) and enhanced the density of Kv currents. Collectively, these results indicate that Notch signaling represents an important regulator of the electrophysiological behavior of developing and adult myocytes by repressing, at least in part, repolarizing Kv currents. NEW & NOTEWORTHY We investigated the effects of Notch receptor signaling on the electrical properties of cardiomyocytes. Our results indicate that the Notch transduction pathway interferes with outward K+ Kv currents, critical determinants of the electrical repolarization of myocytes.


Assuntos
Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Feminino , Cinética , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptor Notch1/genética , Sódio/metabolismo
8.
Stem Cells Int ; 2017: 3464953, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791052

RESUMO

Previously, we reported that treatment with the G9a histone methyltransferase inhibitor BIX01294 causes bone marrow mesenchymal stem cells (MSCs) to exhibit a cardiocompetent phenotype, as indicated by the induction of the precardiac markers Mesp1 and brachyury. Here, we report that combining the histone deacetylase inhibitor trichostatin A (TSA) with BIX01294 synergistically enhances MSC cardiogenesis. Although TSA by itself had no effect on cardiac gene expression, coaddition of TSA to MSC cultures enhanced BIX01294-induced levels of Mesp1 and brachyury expression 5.6- and 7.2-fold. Moreover, MSCs exposed to the cardiogenic stimulus Wnt11 generated 2.6- to 5.6-fold higher levels of the cardiomyocyte markers GATA4, Nkx2.5, and myocardin when pretreated with TSA in addition to BIX01294. MSC cultures also showed a corresponding increase in the prevalence of sarcomeric protein-positive cells when treated with these small molecule inhibitors. These results correlated with data showing synergism between (1) TSA and BIX01294 in promoting acetylation of lysine 27 on histone H3 and (2) BIX01294 and Wnt11 in decreasing ß-catenin accumulation in MSCs. The implications of these findings are discussed in light of observations in the early embryo on the importance of ß-catenin signaling and histone modifications for cardiomyocyte differentiation and heart development.

9.
Stem Cells Int ; 2015: 270428, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26089912

RESUMO

The G9a histone methyltransferase inhibitor BIX01294 was examined for its ability to expand the cardiac capacity of bone marrow cells. Inhibition of G9a histone methyltransferase by gene specific knockdown or BIX01294 treatment was sufficient to induce expression of precardiac markers Mesp1 and brachyury in bone marrow cells. BIX01294 treatment also allowed bone marrow mesenchymal stem cells (MSCs) to express the cardiac transcription factors Nkx2.5, GATA4, and myocardin when subsequently exposed to the cardiogenic stimulating factor Wnt11. Incubation of BIX01294-treated MSCs with cardiac conditioned media provoked formation of phase bright cells that exhibited a morphology and molecular profile resembling similar cells that normally form from cultured atrial tissue. Subsequent aggregation and differentiation of BIX01294-induced, MSC-derived phase bright cells provoked their cardiomyogenesis. This latter outcome was indicated by their widespread expression of the primary sarcomeric proteins muscle α-actinin and titin. MSC-derived cultures that were not initially treated with BIX01294 exhibited neither a commensurate burst of phase bright cells nor stimulation of sarcomeric protein expression. Collectively, these data indicate that BIX01294 has utility as a pharmacological agent that could enhance the ability of an abundant and accessible stem cell population to regenerate new myocytes for cardiac repair.

10.
Cell Reprogram ; 16(5): 324-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090621

RESUMO

The DNA methylation inhibitor 5-azacytidine is widely used to stimulate the cardiac differentiation of stem cells. However, 5-azacytidine has long been employed as a tool for stimulating skeletal myogenesis. Yet, it is unclear whether the ability of 5-azacytidine to promote both cardiac and skeletal myogenesis is dependent strictly on the native potential of the starting cell population or if this drug is a transdifferentiation agent. To address this issue, we examined the effect of 5-azacytidine on cultures of adult mouse atrial tissue, which contains cardiac but not skeletal muscle progenitors. Exposure to 5-azacytidine caused atrial cells to elongate and increased the presence of fat globules within the cultures. 5-Azacytidine also induced expression of the skeletal myogenic transcription factors MyoD and myogenin. 5-Azacytidine pretreatments allowed atrial cells to undergo adipogenesis or skeletal myogenesis when subsequently cultured with either insulin and dexamethasone or low-serum media, respectively. The presence of skeletal myocytes in atrial cultures was indicated by dual staining for myogenin and sarcomeric α-actin. These data demonstrate that 5-azacytidine converts cardiac cells to noncardiac cell types and suggests that this drug has a compromised efficacy as a cardiac differentiation factor.


Assuntos
Azacitidina/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Miocárdio/citologia , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biotechnol Lett ; 35(10): 1707-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23690049

RESUMO

Chronic exposure to solar radiation is the primary cause of photoaging and benign and malignant skin tumors. A conditioned serum-free medium (SFM) was prepared from umbilical cord mesenchymal stem cells (UC-MSCs) and its anti-photoaging effect, following chronic UV irradiation in vitro and in vivo, was evaluated. UC-MSC SFM had a stimulatory effect on human dermal fibroblast proliferation and reduced UVA-induced cell death. In addition, UC-MSC SFM blocked UVA inhibition of superoxide dismutase activity. Topical application of UC-MSC SFM to mouse skin prior to UV irradiation blocked the inhibition of superoxide dismutase and glutathione peroxidase activities, and prevented the upregulation of malonaldehyde. UC-MSC SFM thus protects against photoaging induced by UVA and UVB radiation and is a promising candidate for skin anti-photoaging treatments.


Assuntos
Sobrevivência Celular/efeitos da radiação , Meios de Cultivo Condicionados/química , Fibroblastos/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Raios Ultravioleta , Cordão Umbilical/citologia , Animais , Proliferação de Células , Células Cultivadas , Meios de Cultura Livres de Soro/química , Fibroblastos/fisiologia , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Camundongos , Pele/enzimologia , Pele/metabolismo , Pele/efeitos da radiação , Superóxido Dismutase/metabolismo
12.
PLoS One ; 8(2): e56554, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418583

RESUMO

Understanding how stem cells interact with cardiomyocytes is crucial for cell-based therapies to restore the cardiomyocyte loss that occurs during myocardial infarction and other cardiac diseases. It has been thought that functional myocardial repair and regeneration could be regulated by stem cell-cardiomyocyte contact. However, because various contact modes (junction formation, cell fusion, partial cell fusion, and tunneling nanotube formation) occur randomly in a conventional coculture system, the particular regulation corresponding to a specific contact mode could not be analyzed. In this study, we used laser-patterned biochips to define cell-cell contact modes for systematic study of contact-mediated cellular interactions at the single-cell level. The results showed that the biochip design allows defined stem cell-cardiomyocyte contact-mode formation, which can be used to determine specific cellular interactions, including electrical coupling, mechanical coupling, and mitochondria transfer. The biochips will help us gain knowledge of contact-mediated interactions between stem cells and cardiomyocytes, which are fundamental for formulating a strategy to achieve stem cell-based cardiac tissue regeneration.


Assuntos
Comunicação Celular/fisiologia , Rastreamento de Células/métodos , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Fusão Celular , Membrana Celular/fisiologia , Rastreamento de Células/instrumentação , Células Cultivadas , Técnicas de Cocultura , Corantes Fluorescentes/química , Imuno-Histoquímica , Indóis/química , Junções Intercelulares/fisiologia , Lasers , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Miócitos Cardíacos/citologia , Ratos , Reprodutibilidade dos Testes , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
13.
Stem Cells Dev ; 22(4): 654-67, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22994322

RESUMO

Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.


Assuntos
Azepinas/farmacologia , Células da Medula Óssea , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Miocárdio , Miócitos Cardíacos , Quinazolinas/farmacologia , Animais , Antígenos de Diferenciação/biossíntese , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-24527266

RESUMO

Mesenchymal stem cells (MSCs) have been cited as contributors to heart repair through cardiogenic differentiation and multiple cellular interactions, including the paracrine effect, cell fusion, and mechanical and electrical couplings. Due to heart-muscle complexity, progress in the development of knowledge concerning the role of MSCs in cardiac repair is heavily based on MSC-cardiomyocyte coculture. In conventional coculture systems, however, the in vivo cardiac muscle structure, in which rod-shaped cells are connected end-to-end, is not sustained; instead, irregularly shaped cells spread randomly, resulting in randomly distributed cell junctions. Consequently, contact-mediated cell-cell interactions (e.g., the electrical triggering signal and the mechanical contraction wave that propagate through MSC-cardiomyocyte junctions) occur randomly. Thus, the data generated on the beneficial effects of MSCs may be irrelevant to in vivo biological processes. In this study, we explored whether cardiomyocyte alignment, the most important phenotype, is relevant to stem cell cardiogenic differentiation. Here, we report (i) the construction of a laser-patterned, biochip-based, stem cell-cardiomyocyte coculture model with controlled cell alignment; and (ii) single-cell-level data on stem cell cardiogenic differentiation under in vivo-like cardiomyocyte alignment conditions.

15.
Cell Mol Bioeng ; 5(3): 327-336, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23139730

RESUMO

Normal cardiomyocytes are highly dependent on the functional expression of ion channels to form action potentials and electrical coupling with other cells. To fully determine the scientific and therapeutic potential of stem cells for cardiovascular-disease treatment, it is necessary to assess comprehensively the regulation of stem-cell electrical properties during stem cell-cardiomyocyte interaction. It has been reported in the literature that contact with native cardiomyocytes induced and regulated stem-cell cardiogenic differentiation. However, in conventional cell-culture models, the importance of cell-cell contact for stem-cell functional coupling with cardiomyocytes has not been elucidated due to insufficient control of the cell-contact mode of individual cells. Using microfabrication and laser-guided cell micropatterning techniques, we created two biochips with contact-promotive and -preventive microenvironments to systematically study the effect of contact on cardiogenic regulation of stem-cell electrical properties. In contact-promotive biochips, connexin 43 expression was upregulated and relocated to the junction area between one stem cell and one cardiomyocyte. Only stem cells in contact with cardiomyocytes were induced by adjacent cardiomyocytes to acquire electrophysiological properties for action-potential formation similar to that of a cardiomyocyte.

16.
Dev Growth Differ ; 54(2): 153-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22150286

RESUMO

Lithium is a commonly used drug for the treatment of bipolar disorder. At high doses, lithium becomes teratogenic, which is a property that has allowed this agent to serve as a useful tool for dissecting molecular pathways that regulate embryogenesis. This study was designed to examine the impact of lithium on heart formation in the developing frog for insights into the molecular regulation of cardiac specification. Embryos were exposed to lithium at the beginning of gastrulation, which produced severe malformations of the anterior end of the embryo. Although previous reports characterized this deformity as a posteriorized phenotype, histological analysis revealed that the defects were more comprehensive, with disfigurement and disorganization of all interior tissues along the anterior-posterior axis. Emerging tissues were poorly segregated and cavity formation was decreased within the embryo. Lithium exposure also completely ablated formation of the heart and prevented myocardial cell differentiation. Despite the complete absence of cardiac tissue in lithium treated embryos, exposure to lithium did not prevent myocardial differentiation of precardiac dorsal marginal zone explants. Moreover, precardiac tissue freed from the embryo subsequent to lithium treatment at gastrulation gave rise to cardiac tissue, as demonstrated by upregulation of cardiac gene expression, display of sarcomeric proteins, and formation of a contractile phenotype. Together these data indicate that lithium's effect on the developing heart was not due to direct regulation of cardiac differentiation, but an indirect consequence of disrupted tissue organization within the embryo.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Coração/embriologia , Lítio/farmacologia , Animais , Embrião não Mamífero/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis
17.
Lab Chip ; 12(3): 566-73, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22170399

RESUMO

Following myocardial infarction there is an irreversible loss of cardiomyocytes that results in the alteration of electrical propagation in the heart. Restoration of functional electrical properties of the damaged heart muscle is essential to recover from the infarction. While there are a few reports that demonstrate that fibroblasts can form junctions that transmit electrical signals, a potential alternative using the injection of stem cells has emerged as a promising cellular therapy; however, stem-cell electrical conductivity within the cardiac muscle fiber is unknown. In this study, an in vitro cardiac muscle model was established on an MEA-based biochip with multiple cardiomyocytes that mimic cardiac tissue structure. Using a laser beam, stem cells were inserted adjacent to each muscle fiber (cell bridge model) and allowed to form cell-cell contact as determined by the formation of gap junctions. The electrical conductivity of stem cells was assessed and compared with the electrical conductivities of cardiomyocytes and fibroblasts. Results showed that stem cell-myocyte contacts exhibited higher and more stable conduction velocities than myocyte-fibroblast contacts, which indicated that stem cells have higher electrical compatibility with native cardiac muscle fibers than cardiac fibroblasts.


Assuntos
Condutividade Elétrica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Miocárdio/citologia , Células-Tronco/metabolismo , Animais , Desenho de Equipamento , Fibroblastos/citologia , Fibroblastos/patologia , Junções Comunicantes/metabolismo , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Ratos , Células-Tronco/citologia
18.
Am J Physiol Heart Circ Physiol ; 301(5): H1952-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908788

RESUMO

This study examined transgenic mice whose expression of a ß-galactosidase (lacZ) reporter is driven by a GATA6 gene enhancer. Previous investigations established that transcription of the transgene was associated with precardiac mesoderm and primary heart tube myocardium, which decreased progressively, so that its expression was no longer observed within ventricular myocardium by midgestation. Expression of this reporter in the adult was investigated for insights into myocyte homeostasis and cardiovascular biology. Morphometric analysis determined that <1% of myocytes, often found in small clusters, express this GATA6-associated reporter in the adult heart. LacZ expression was also found in the ascending aorta. Myocardial expression of the transgene was not associated with a proliferative phenotype or new myocyte formation, as lacZ-positive myocytes neither labeled with cell division markers nor following 5-bromodeoxyuridine pulse-chase experimentation. Despite exhibiting normal adherens junctions, these myocytes appeared to exhibit decreased connexin 43 gap junctions. Treatment with the gap junctional blocker heptanol both in vivo and in culture elevated myocardial ß-galactosidase activity, suggesting that deficient gap junctional communication underlies expression of the transgenic reporter. LacZ expression within the myocardium was also enhanced in response to cryoinjury and isoproterenol-induced hypertrophy. These results reveal a previously uncharacterized phenotypic heterogeneity in the myocardium and suggest that decreased gap junctional coupling leads to induction of a signaling pathway that utilizes a unique GATA6 enhancer. Upregulation of lacZ reporter gene expression following cardiac injury indicates this transgenic mouse may serve as a model for examining the transition of the heart from healthy to pathological states.


Assuntos
Comunicação Celular/genética , Fator de Transcrição GATA6/genética , Junções Comunicantes/metabolismo , Genes Reporter , Óperon Lac , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Junções Aderentes/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Modelos Animais de Doenças , Junções Comunicantes/efeitos dos fármacos , Genótipo , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Heptanol/farmacologia , Isoproterenol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Regulação para Cima , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
19.
Stem Cells Dev ; 20(11): 1973-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21351874

RESUMO

WNT signaling has been shown to influence the development of the heart. Although recent data suggested that canonical WNTs promote the emergence and expansion of cardiac progenitors in the pregastrula embryo, it has long been accepted that once gastrulation begins, canonical WNT signaling needs to be suppressed for cardiac development to proceed. Yet, this latter supposition appears to be odds with the expression of multiple canonical WNTs in the developing heart. The present study examining the effect of ectopic canonical WNT signaling on cardiogenesis in the developing frog was designed to test the hypothesis that heart formation is dependent on the inhibition of canonical WNT activity at the onset of gastrulation. Here we report that cardiac differentiation of explanted precardiac tissue from the dorsal marginal zone was not suppressed by exposure to WNT1 protein, although expression of Tbx5, Tbx20, and Nkx2.5 was selectively reduced. Pharmacological activation of WNT signaling in intact embryos using the GSK3 inhibitor SB415286 did not prevent the formation of an anatomically normal and functionally sound heart, with the only defect observed being lower levels of the cardiac transcription factor Nkx2.5. In both the explant and whole embryo studies, expression of muscle genes and proteins was unaffected by ectopic canonical WNT signaling. In contrast, canonical Wnt signaling upregulated expression of the cardiac stem cell marker c-kit and pluripotency genes Oct25 and Oct60. However, this regulatory stimulation of stem cells did not come at the expense of blocking cardiac progenitors from differentiating.


Assuntos
Diferenciação Celular , Coração/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Miocárdio/citologia , Transdução de Sinais , Células-Tronco/fisiologia , Via de Sinalização Wnt , Xenopus laevis/crescimento & desenvolvimento , Aminofenóis/farmacologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Blástula/citologia , Blástula/metabolismo , Feminino , Gastrulação , Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Larva/genética , Larva/metabolismo , Maleimidas/farmacologia , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/metabolismo , Células-Tronco/metabolismo , Técnicas de Cultura de Tecidos , Proteína Wnt1/farmacologia , Proteína Wnt1/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
20.
J Mater Sci Mater Med ; 20(1): 329-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18807150

RESUMO

Centrifugal casting allows rapid biofabrication of tubular tissue constructs by suspending living cells in an in situ cross-linkable hydrogel. We hypothesize that introduction of laser-machined micropores into a decellularized natural scaffold will facilitate cell seeding by centrifugal casting and increase hydrogel retention, without compromising the biomechanical properties of the scaffold. Micropores with diameters of 50, 100, and 200 mum were machined at different linear densities in decellularized small intestine submucosa (SIS) planar sheets and tubular SIS scaffolds using an argon laser. The ultimate stress and ultimate strain values for SIS sheets with laser-machined micropores with diameter 50 mum and distance between holes as low as 714 mum were not significantly different from unmachined control SIS specimens. Centrifugal casting of GFP-labeled cells suspended in an in situ cross-linkable hyaluronan-based hydrogel resulted in scaffold recellularization with a high density of viable cells inside the laser-machined micropores. Perfusion tests demonstrated the retention of the cells encapsulated within the HA hydrogel in the microholes. Thus, an SIS scaffold with appropriately sized microholes can be loaded with hydrogel encapsulated cells by centrifugal casting to give a mechanically robust construct that retains the cell-seeded hydrogel, permitting rapid biofabrication of tubular tissue construct in a "bioreactor-free" fashion.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Prótese Vascular , Linhagem Celular , Sobrevivência Celular , Humanos , Hidrogéis , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/química , Lasers , Teste de Materiais , Mesoderma/citologia , Codorniz , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA