Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Respir Res ; 14: 119, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24499207

RESUMO

BACKGROUND: The ability of chemicals to disrupt neonatal development can be studied using embryonic stem cells (ESC). One such chemical is nicotine. Prenatal nicotine exposure is known to affect postnatal lung function, although the mechanisms by which it has this effect are not clear. Since fibroblasts are a critical component of the developing lung, providing structure and secreting paracrine factors that are essential to epithelialization, this study focuses on the differentiation of ESC into fibroblasts using a directed differentiation protocol. METHODS: Fibroblasts obtained from non-human primate ESC (nhpESC) differentiation were analyzed by immunohistochemistry, immunostaining, Affymetrix gene expression array, qPCR, and immunoblotting. RESULTS: Results of these analyses demonstrated that although nhpESCs differentiate into fibroblasts in the presence of nicotine and appear normal by some measures, including H&E and SMA staining, they have an altered gene expression profile. Network analysis of expression changes demonstrated an over-representation of cell-cycle related genes with downregulation of N-myc as a central regulator in the pathway. Further investigation demonstrated that cells differentiated in the presence of nicotine had decreased N-myc mRNA and protein expression and longer doubling times, a biological effect consistent with downregulation of N-myc. CONCLUSIONS: This study is the first to use primate ESC to demonstrate that nicotine can affect cellular differentiation from pluripotency into fibroblasts, and in particular, mediate N-myc expression in differentiating ESCs. Given the crucial role of fibroblasts throughout the body, this has important implications for the effect of cigarette smoke exposure on human development not only in the lung, but in organogenesis in general.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Nicotina/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/patologia , Modelos Animais , Primatas , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
2.
Cell Reprogram ; 12(3): 263-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20698768

RESUMO

Deciding to exit pluripotency and undergo differentiation is of singular importance for pluripotent cells, including embryonic stem cells (ESCs). The molecular mechanisms for these decisions to differentiate, as well as reversing those decisions during induced pluripotency (iPS), have focused largely on transcriptomic controls. Here, we explore the role of translational control for the maintenance of pluripotency and the decisions to differentiate. Global protein translation is significantly reduced in hESCs compared to their differentiated progeny. Furthermore, p70 S6K activation is restricted in hESCs compared to differentiated fibroblast-like cells. Disruption of p70 S6K-mediated translation by rapamycin or siRNA knockdown in undifferentiated hESCs does not alter cell viability or expression of the pluripotency markers Oct4 and Nanog. However, expression of constitutively active p70 S6K, but not wild-type p70 S6K, induces differentiation. Additionally, hESCs exhibit high levels of the mTORC1/p70 S6K inhibitory complex TSC1/TSC2 and preferentially express more rapamycin insensitive mTORC2 compared to differentiated cells. siRNA-mediated knockdown of both TSC2 and Rictor elevates p70 S6K activation and induces differentiation of hESCs. These results suggest that hESCs tightly regulate mTORC1/p70 S6K-mediated protein translation to maintain a pluripotent state as well as implicate a novel role for protein synthesis as a driving force behind hESC differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Células-Tronco Embrionárias/efeitos dos fármacos , Ativação Enzimática , Humanos , Microscopia Eletrônica de Transmissão , Células-Tronco Pluripotentes/efeitos dos fármacos , Interferência de RNA , Sirolimo/farmacologia
3.
Microbiology (Reading) ; 154(Pt 7): 2119-2130, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599839

RESUMO

Overproduction of the exopolysaccharide alginate and conversion to a mucoid phenotype in Pseudomonas aeruginosa are markers for the onset of chronic lung infection in cystic fibrosis (CF). Alginate production is regulated by the extracytoplasmic function (ECF) sigma factor AlgU/T and the cognate anti-sigma factor MucA. Many clinical mucoid isolates carry loss-of-function mutations in mucA. These mutations, including the most common mucA22 allele, cause C-terminal truncations in MucA, indicating that an inability to regulate AlgU activity by MucA is associated with conversion to the mucoid phenotype. Here we report that a mutation in a stable mucoid strain derived from the parental strain PAO1, designated PAO581, that does not contain the mucA22 allele, was due to a single-base deletion in mucA (DeltaT180), generating another type of C-terminal truncation. A global mariner transposon screen in PAO581 for non-mucoid isolates led to the identification of three regulators of alginate production, clpP (PA1801), clpX (PA1802), and a clpP paralogue (PA3326, designated clpP2). The PAO581 null mutants of clpP, clpX and clpP2 showed decreased AlgU transcriptional activity and an accumulation of haemagglutinin (HA)-tagged N-terminal MucA protein with an apparent molecular mass of 15 kDa. The clpP and clpX mutants of a CF mucoid isolate revert to the non-mucoid phenotype. The ClpXP and ClpP2 proteins appear to be part of a proteolytic network that degrades the cytoplasmic portion of truncated MucA proteins to release the sequestered AlgU, which drives alginate biosynthesis.


Assuntos
Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicosaminoglicanos/metabolismo , Peptídeo Hidrolases/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Fibrose Cística/microbiologia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Insercional , Peptídeo Hidrolases/genética , Fenótipo , Mutação Puntual , Pseudomonas aeruginosa/genética , Fator sigma/genética , Fator sigma/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(19): 8107-12, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470813

RESUMO

Overproduction of the exopolysaccharide alginate causes mucoid conversion in Pseudomonas aeruginosa and is a poor prognosticator in cystic fibrosis. The ECF sigma factor AlgU and its cognate anti-sigma factor MucA are two principal regulators of alginate production. Here, we report the identification of three positive regulators of alginate biosynthesis: PA4033 (designated mucE), PA3649 (designated mucP), and algW. MucE, a small protein (9.5 kDa), was identified as part of a global mariner transposon screen for new regulators of alginate production. A transposon located in its promoter caused the overexpression of MucE and mucoid conversion in P. aeruginosa strains PAO1 and PA14. Accumulation of MucE in the envelope resulted in increased AlgU activity and reduced MucA levels. Three critical amino acid residues at the C terminus of MucE (WVF) were required for mucoid conversion via two predicted proteases AlgW (DegS) and MucP (RseP/YaeL). Moreover, as in Escherichia coli, the PDZ domain of AlgW was required for signal transduction. These results suggest that AlgU is regulated similarly to E. coli sigma(E) except that the amino acid triad signals from MucE and other envelope proteins that activate AlgW are slightly different from those activating DegS.


Assuntos
Glicosaminoglicanos/metabolismo , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Elementos de DNA Transponíveis , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Serina Endopeptidases/fisiologia , Fator sigma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA