Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biopolymers ; : e23586, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747448

RESUMO

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.

2.
Environ Sci Pollut Res Int ; 31(24): 36052-36063, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38744768

RESUMO

Industrialization and the ever-increasing world population have diminished high-quality water resources for sustainable agriculture. It is imperative to effectively treat industrial effluent to render the treated water available for crop cultivation. This study aimed to assess the effectiveness of textile effluent treated with Trametes pubescens MB 89 in supporting maize cultivation. The fungal treatment reduced the amounts of Co, Pb and As in the textile effluent. The biological oxygen demand, total dissolved solids and total suspended solids were within the permissible limits in the treated effluent. The data indicated that the irrigation of maize with fungal-treated textile effluent improved the growth parameters of the plant including root, shoot length, leaf area and chlorophyll content. Moreover, better antioxidant activity, total phenol content and protein content in roots, stems and leaves of maize plants were obtained. Photosynthetic parameters (potential quantum yield, electron transport rate and fluorescence yield of non-photochemical losses other than heat) were also improved in the plants irrigated with treated effluent as compared to the control groups. In conclusion, the treatment of textile effluent with the immobilized T. pubescens presents a sustainable solution to minimize chemical pollution and effectively utilize water resources.


Assuntos
Têxteis , Trametes , Trametes/metabolismo , Zea mays , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água , Águas Residuárias/química
3.
J Basic Microbiol ; 64(2): e2300529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066405

RESUMO

Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 ß-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of ß-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of ß-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.


Assuntos
Celulase , Corantes de Rosanilina , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Poligalacturonase , Saccharum/metabolismo , Lacase , Trametes/metabolismo , Fermentação , beta-Glucosidase/metabolismo
4.
Biotechnol J ; 18(11): e2200477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458688

RESUMO

Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.


Assuntos
Peptonas , Poligalacturonase , Poligalacturonase/química , Poligalacturonase/metabolismo , Biomassa , Fermentação , Pectinas/metabolismo
5.
Res Vet Sci ; 161: 96-102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329851

RESUMO

Avian mycoplasmosis is an infection that commonly prevails in birds, particularly in poultry chickens. Among mycoplasmosis causing organisms, Mycoplasmopsis synoviae is a predominant and lethal pathogen to the aves. Considering the increased incidence of infections by M. synoviae, the prevalence of M. synoviae was deduced in poultry chickens and fancy birds of Karachi region. The lungs and tracheal samples from chicken and dead fancy birds and swab samples from live fancy birds were collected and investigated by amplifying 16 s rRNA gene of M. synoviae. Biochemical characteristics of M. synoviae was also evaluated. Furthermore, surface-associated membrane proteins, that represent key antigens for diagnosis of M. synoviae infection was extracted by Triton X- 114 method. Results showed that M. synoviae was detected more frequently in lungs than in trachea, that could be due to its invasion capacity and tissue affinity. SDS PAGE analysis of extracted membrane proteins showed two prominent hydrophobic proteins of different molecular mass including proteins of 150 and 50 kDa. Protein of 150 kDa was purified by size exclusion chromatography and it exhibited agglutinogen activity. Purified protein was used in the development of one-step immunochromatographic (ICT) assay for the detection of antibodies against M. synoviae using gold nanoparticles coated with polyclonal antibodies. Low levels of antibodies were detected by the developed ICT kit, which has 88% sensitivity with 92% specificity.


Assuntos
Nanopartículas Metálicas , Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Animais , Galinhas , Prevalência , Paquistão/epidemiologia , Ouro , Mycoplasma synoviae/genética , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Aves Domésticas , Proteínas de Membrana , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/epidemiologia
6.
Antonie Van Leeuwenhoek ; 116(7): 653-665, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140754

RESUMO

Genetic and enzymatic potential of Neobacillus sedimentimangrovi has not been assembled to date. Here, we report a high-quality genome assembly of thermophilic bacterium Neobacillus sedimentimangrovi UE25 using Illumina Hi-seq 2500. The strain was isolated from a crocodile pond Manghopir, Karachi, Pakistan. QUAST quality parameters showed 37.75% GC content and exhibited the genome into 110 contigs, with a total size of 3,230,777 bases. Genome of N. sedimentimangrovi UE25 harbors phage mediated DNA through horizontal gene exchange from the phages, symbiotic and pathogenic bacteria. Most of the phage genome encodes for hypothetical proteins, protease, and phage assembly proteins. Gene clusters encoding the intrinsic resistance to glycopeptides, isoniazid, rifamycin, elfamycin, macrolide, aminoglycosides, tetracycline and fluoroquinolone were identified into the genome. Since, the strain has been reported for the production of many industrially important thermostable enzymes, therefore, the genomic data of thermostable enzymes might be helpful to employ this species in commercial sectors. Probing genes of multiple thermostable glycoside hydrolase enzymes especially xylanases of N. sedimentimangrovi UE25 showed genetic diversity among the genes and confer the industrial importance of this microorganism. Furthermore, the genome of N. sedimentimangrovi will greatly improve our understanding of its genetics and evolution.


Assuntos
Bacillaceae , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Bactérias/metabolismo , Bacillaceae/metabolismo , Isoniazida , Genômica
7.
Genes (Basel) ; 14(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107541

RESUMO

Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect the mecA gene and the genes encoding microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) in S. aureus isolates. A total of 116 strains were isolated from patients suffering with pyoderma. Disk diffusion assay was opted to perform antimicrobial susceptibility testing of the isolates. Out of the isolates tested, 23-42.2% strains appeared susceptible to benzylpenicillin, cefoxitin, ciprofloxacin and erythromycin. While linezolid was found to be the most effective anti-staphylococcal drug, followed by rifampin, chloramphenicol, clindamycin, gentamicin and ceftaroline. Out of 116 isolates, 73 (62.93%) were methicillin-resistant S. aureus (MRSA). Statistically significant (p ≤ 0.05) differences in antibiotic resistance patterns between MRSA and methicillin-susceptible S. aureus (MSSA) were found. A significant association of resistance to ceftaroline, rifampin, tetracycline, ciprofloxacin, clindamycin, trimethoprim-sulfamethoxazole and chloramphenicol was found in MRSA. However, no significant difference was observed between MRSA and MSSA for resistance against gentamicin, erythromycin or linezolid. All cefoxitin-resistant S. aureus, nonetheless, were positive for the mecA gene. femA was found in all the MRSA isolates. Among other virulence markers, bbp and fnbB were found in all the isolates, while can (98.3%), clfA and fnbA (99.1%) were present predominately in MRSA. Thus, this study offers an understanding of antibiotic resistance MSCRAMMs, mecA, and femA gene patterns in locally isolated strains of S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pioderma , Humanos , Staphylococcus aureus/genética , Clindamicina/farmacologia , Linezolida/farmacologia , Cefoxitina/farmacologia , Rifampina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritromicina/farmacologia , Eritromicina/uso terapêutico , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Cloranfenicol/farmacologia , Pioderma/tratamento farmacológico , Ceftarolina
8.
J Basic Microbiol ; 63(7): 722-733, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36856084

RESUMO

Sugarcane bagasse (SB) is a promising source of appreciable quantities of fermentable sugars. However, the presence of lignin hinders utilization of these carbohydrates and hence pretreatment to remove lignin is necessarily carried out. Here, a biological pretreatment method was synchronized with the production of a thermostable cellulase using SB as a raw material. Initially, bagasse was fermented by a laccase producing fungus, Trametes pubescens MB 89 under solid state fermentation (SSF) and a titer of 1758 IU mL-1 of laccase was obtained. Investigations of nine factors affecting laccase production through Plackett Burman design improved the titers to 6539 IU mL-1 . Five factors (incubation period, concentration of CuSO4 , temperature, moisture content, and particle size) were found significant which were optimized through Central Composite design leading to an improvement in the titers by ~5 folds (8841 IU mL-1 ). Biologically pretreated SB was fermented by a thermophilic bacterium, Neobacillus sedimentimangrovi UE25, that yielded 8.64 IU mL-1 of cellulase. Delignification and cellulose utilization were affirmed by structural analysis through FTIR and SEM. The synchronized process yielded higher titers of laccase and cellulase under SSF of SB with the minimum use of corrosive chemicals.


Assuntos
Celulase , Saccharum , Celulose/metabolismo , Lignina/metabolismo , Lacase/metabolismo , Celulase/metabolismo , Saccharum/química , Trametes/metabolismo , Fermentação , Bactérias/metabolismo , Hidrólise
9.
Int J Biol Macromol ; 235: 123903, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870634

RESUMO

Agro-industrial wastes and by-products are the natural and abundant resources of biomaterials to obtain various value-added items such as biopolymer films, bio-composites and enzymes. This study presents a way to fractionate and to convert an agro-industrial residue, sugarcane bagasse (SB), into useful materials with potential applications. Initially cellulose was extracted from SB which was then converted into methylcellulose. The synthesized methylcellulose was characterized by scanning electron microscopy and FTIR. Biopolymer film was prepared by using methylcellulose, polyvinyl alcohol (PVA), glutaraldehyde, starch and glycerol. The biopolymer was characterized to exhibit 16.30 MPa tensile strength, 0.05 g/m2 h of water vapor transmission rate, 366 % of water absorption to its original weight after 115 min of immersion, 59.08 % water solubility, 99.05 % moisture retention capability and 6.01 % of moisture absorption after 144 h. Furthermore, in vitro studies on absorption and dissolution of model drug by biopolymer showed 2.04 and 104.59 % of swelling ratio and equilibrium water content, respectively. Biocompatibility of the biopolymer was checked by using gelatin media and it was observed that swelling ratio was higher in initial 20 min of contact. The extracted hemicellulose and pectin from SB were fermented by a thermophilic bacterial strain, Neobacillus sedimentimangrovi UE25 that yielded 12.52 and 6.4 IU mL-1 of xylanase and pectinase, respectively. These industrially important enzymes further augmented the utility of SB in this study. Therefore, this study emphasizes the possibility for industrial application of SB to form various products.


Assuntos
Celulose , Saccharum , Celulose/química , Metilcelulose , Álcool de Polivinil/química , Saccharum/química
10.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771985

RESUMO

Immobilization of microbial cells for the production of industrially important enzymes has been reported to offer the advantages of recyclability, higher yields and cost effectiveness. The search for an appropriate matrix that is affordable and easy to prepare is a significant topic in microbial biotechnology. Here, an abundant type of agro-industrial waste-corncob-was utilized as an immobilization matrix for the production of xylanase from an indigenous yeast strain, Saccharomyces cerevisiae MK-157. This is the first report describing xylanase production from immobilized S. cerevisiae. To render the corncob matrix more porous, alkaline pretreatment was undertaken and yeast cells were immobilized on the matrix by cultivating at 30 °C for 48 h in Sabouraud dextrose broth. After incubation, the immobilized matrix was transferred to mineral salt medium containing 1% xylan and incubated at 30 °C for 24 h. Xylanase production was determined in cell-free culture supernatant and the matrix was recycled for up to seven cycles. Moreover, xylanase-mediated saccharification was carried out using sugarcane bagasse as a substrate and the release of reducing sugars was monitored. The results showed that the immobilized yeast produced 4.97 IU mL-1 xylanase in the first production cycle, indicating a >tenfold increase compared to the free cells. Xylanase production further increased to its maximum levels (9.23 IU mL-1) in the fourth production cycle. Nonetheless, the cells retained 100% productivity for up to seven cycles. The volumetric and specific productivity of xylanase were also the highest in the fourth cycle. Scanning electron microscopy images revealed the rough surface of the untreated corncob, which became more porous after alkaline pretreatment. Immobilized yeast cells were also visible on the corncob pieces. The saccharification of a natural resource-sugarcane bagasse-using xylanase preparation yielded 26 mg L-1 of reducing sugars. Therefore, it can be concluded that yeast strains can yield sufficient quantities of xylanase, allowing possible biotechnological applications. Moreover, corncob can serve as a cost-effective matrix for industrially important yeast strains.

11.
Enzyme Microb Technol ; 162: 110133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152593

RESUMO

Recent advancements in biorefinery processes necessitate search for cost effective and thermostable cellulases. This study was designed to characterize the cellulase obtained from a thermophilic bacterium, Neobacillus sedimentimangrovi UE25. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to sugarcane bagasse (SB) for lignin removal and the pretreated SB was utilized as a carbon source for the cellulase production. The thermostable cellulase thus obtained was characterized by adopting central composite design which has not been reported earlier for this purpose. Cellulase showed its maximum activity at pH 7 and temperature 60 â„ƒ and it remained active in the presence of many salts and detergents. Endoglucanase (EG) was found to be stable for 30 min at 80 â„ƒ. The purification of EG by using DEAE column yielded specific activity and purification fold of 365.866 IU mg-1 and 4.264, respectively. The purified EG had a molecular weight of ∼45 kDa. End product tolerance of EG was also evident, as an activity of 228.57 IU mL-1 was observed in the presence of 60 mM glucose which revealed that it does not lose its activity upon accumulation of end-product when the reaction is prolonged. The purified EG exhibited Vmax and Km of 294 U mL-1 min-1 and 36 µM, respectively, in the presence of 60 mM glucose. This novel thermostable cellulase can finds its applications in industrial sector.


Assuntos
Bacillaceae , Celulase , Celulases , Saccharum , Celulase/metabolismo , Celulose/química , Saccharum/metabolismo , Estabilidade Enzimática , Temperatura , Glucose , Concentração de Íons de Hidrogênio
12.
Polymers (Basel) ; 13(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833242

RESUMO

A large amount of industrial wastewater containing pollutants including toxic dyes needs to be processed prior to its discharge into the environment. Biological materials such as sugarcane bagasse (SB) have been reported for their role as adsorbents to remove the dyes from water. In this study, the residue SB after fermentation was utilized for the dye removal. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to SB for lignin removal, and the pretreated SB was utilized for cellulase production from Bacillus aestuarii UE25. The strain produced 118 IU mL-1 of endoglucanse and 70 IU mL-1 of ß-glucosidase. Scanning electron microscopy and FTIR spectra showed lignin and cellulose removal in fermented SB. This residue was utilized for the adsorption of an azo dye, congo red (CR). The thermodynamic, isotherm and kinetics studies for the adsorption of CR revealed distinct adsorption features of SB. Untreated SB followed Langmuir isotherm, whereas pretreated SB and fermented SB obeyed the Freundlich isotherm model. The pseudo-second-order model fitted well for the studied adsorbents. The results of thermodynamic studies revealed spontaneous adsorption with negative standard free energy values. Untreated SB showed a 90.36% removal tendency at 303.15 K temperature, whereas the adsorbents comprised of pretreated and fermented SB removed about 98.35% and 97.70%, respectively. The study provided a strategy to utilize SB for cellulase production and its use as an adsorbent for toxic dyes removal.

13.
Front Microbiol ; 12: 714940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616380

RESUMO

Biofuel derived from halophytic biomass is getting attention owing to the concerns of energy versus food crisis. The disadvantages associated with edible bioenergy resources necessitate the need to explore new feedstocks for sustainable biofuel production. In this study, biomass from locally available abundant halophytes (Panicum antidotale, Phragmites karka, Halopyrum mucronatum, and Desmostachya bipinnata) was screened for saccharification by an enzyme cocktail composed of cellulase, xylanase, and pectinase from Brevibacillus borstelensis UE10 and UE27, Bacillus aestuarii UE25, Aneurinibacillus thermoaerophilus UE1, and Bacillus vallismortis MH 1. Two types of pretreatment, i.e., with dilute acid and freeze-thaw, were independently applied to the halophytic biomass. Saccharification of acid-pretreated P. karka biomass yielded maximum reducing sugars (9 mg g-1) as compared to other plants. Thus, the factors (temperature, pH, substrate concentration, and enzyme units) affecting its saccharification were optimized using central composite design. This statistical model predicted 49.8 mg g-1 of reducing sugars that was comparable to the experimental value (40 mg g-1). Scanning electron microscopy and Fourier-transform infrared spectroscopy showed significant structural changes after pretreatment and saccharification. Therefore, halophytes growing in saline, arid, and semi-arid regions can be promising alternative sources for bioenergy production.

14.
J Basic Microbiol ; 61(11): 1016-1028, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34463967

RESUMO

The utilization of sugarcane bagasse (SB) in fermentation requires pretreatment processes to render fermentable components available to microorganisms. Pretreatment by using ionic liquids (ILs) is considered promising but the high cost is an impediment in its adoption, therefore, a mixture of IL pretreated and untreated SB was utilized to obtain bacterial multienzyme under solid-state fermentation (SSF). Bacillus aestuarii UE25, a thermophilic strain was utilized for that purpose. Fermentation conditions were optimized by adopting a central composite design. The model showed a good correlation between the predicted and the experimental values for amylase, xylanase, endoglucanase, and ß-glucosidase. Volumetric and specific productivity of xylanase (4580 IU ml-1 h-1 , 244.25 IU mg-1 substrate, and 50 IU mg-1 protein) were higher than the other enzymes. Changes in lignin content and reduced cellulose crystallinity due to IL pretreatment, followed by fermentation, were visualized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Nuclear magnetic resonance. The strategy adopted by utilizing a mixture of IL pretreated and untreated SB under SSF proved promising to obtain high titers of different enzymes simultaneously. Since the bacterial strain used is thermophilic, therefore, the multienzyme can find its application in commercial processes which are carried out at high temperatures.


Assuntos
Bacillus/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Saccharum/metabolismo , Amilases/metabolismo , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Celulose/química , Fermentação , Temperatura Alta , Lignina/metabolismo , Saccharum/química , Xilosidases/metabolismo , beta-Glucosidase/metabolismo
15.
Biomimetics (Basel) ; 6(3)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34287227

RESUMO

Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry.

16.
J Sci Food Agric ; 101(4): 1709-1714, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32844441

RESUMO

BACKGROUND: Lignocellulosic wastes are pretreated prior to their utilization in fermentation processes. Such pretreatment also alters the topological features of the substrates, and therefore the suitability of pretreated waste as immobilization matrix for microbial cells needs investigation. RESULTS: In this study, the effect of chemical pretreatment of sugarcane bagasse (SB) for its subsequent utilization as a matrix to immobilize a pectinolytic yeast, Geotrichum candidum AA15, was evaluated using cell retention, concentration of immobilized cells, immobilization efficiency, scanning electron microscopy and Fourier transform infrared spectroscopy of the substrate and pectinase titers obtained after recycling. The results revealed that untreated SB is more efficient for immobilization with higher values of cell retention and pectinase productivity (99.78%) retained for up to six production cycles. It was deduced that removal of lignin by pretreatment negatively influenced the ability of SB to support cell adhesion, as lignin acts as a sealing agent that provides strength to the substrate. CONCLUSIONS: The strategy of utilizing SB as immobilization matrix was found effective at the laboratory scale as it improved pectinase production and may be investigated further for large-scale and cost-effective production. © 2020 Society of Chemical Industry.


Assuntos
Celulose/metabolismo , Geotrichum/química , Geotrichum/metabolismo , Lignina/química , Poligalacturonase/biossíntese , Saccharum/microbiologia , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Fermentação , Geotrichum/enzimologia , Hidrólise , Lignina/metabolismo , Saccharum/química , Espectroscopia de Infravermelho com Transformada de Fourier
17.
BMC Biotechnol ; 20(1): 64, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298027

RESUMO

BACKGROUND: Lignin in sugarcane bagasse (SB) hinders its utilization by microorganism, therefore, pretreatment methods are employed to make fermentable components accessible to the microbes. Multivariate analysis of different chemical pretreatment methods can aid to select the most appropriate strategy to valorize a particular biomass. RESULTS: Amongst methods tested, the pretreatment by using sodium hydroxide in combination with methyltrioctylammonium chloride, an ionic liquid, (NaOH+IL) was the most significant for xylanase production by Bacillus aestuarii UE25. Investigation of optimal levels of five significant variables by adopting Box-Behnken design (BBD) predicted 20 IU mL- 1 of xylanase and experimentally, a titer of 17.77 IU mL- 1 was obtained which indicated the validity of the model. The production kinetics showed that volumetric productivity of xylanase was much higher after 24 h (833.33 IU L- 1 h- 1) than after 48 h (567.08 IU L- 1 h- 1). The extracted xylan from SB induced more xylanase in the fermentation medium than pretreated SB or commercially purified xylan. Nuclear Magnetic Resonance, Fourier transform infrared spectroscopy and scanning electron microscopy of SB indicated removal of lignin and changes in the structure of SB after NaOH+IL pretreatment and fermentation. CONCLUSION: Combined pretreatment of SB with alkali and methyltrioctylammonium chloride appeared better than other chemical methods for bacterial xylanase production and for the extraction of xylan form SB.


Assuntos
Bacillus/enzimologia , Bacillus/metabolismo , Celulose/metabolismo , Líquidos Iônicos/química , Polissacarídeos/metabolismo , Saccharum/química , Álcalis , Celulase , Endo-1,4-beta-Xilanases , Fermentação , Lignina , Compostos de Amônio Quaternário , Hidróxido de Sódio/química , Xilosidases
18.
Heliyon ; 6(11): e05456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33225094

RESUMO

The wide scale application of pectinase is generally hindered by high cost of the enzyme production. In this work, a two dimensional strategy was adopted to reduce cost of pectinase production by Geotrichum candidum AA15. The strain was immobilized in alginate beads. The optimum concentration for bead formation was found to be 3.5% of sodium alginate (NA) with 4% calcium chloride (CaCl2). Such immobilized cells retained the ability to produce 0.115 IU mL-1 of pectinase for up to 6th production cycle in citrus pectin containing medium while free cells produced only 0.046 IU mL-1 of pectinase. For the cultivation of immobilized cells on orange peels (OP), a combination of 4.5% NA and 4% CaCl2 was found effective to prepare beads. Geotrichum candidum AA15 produced 0.220 IU mL-1 pectinase by fermenting OP as a substrate for up to 3rd production cycle. The results revealed that the process of immobilization can be used as a promising strategy in combination with the use of naturally available waste biomass.

19.
Int J Biol Macromol ; 165(Pt A): 11-17, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987070

RESUMO

Cellulose, the most abundant feedstock of chemicals and energy is extracted from various agro-industrial wastes, such as sugarcane bagasse (SB). Pretreatment of SB with ionic liquids improves extraction of cellulose, yet the use of ionic liquid is hindered by its high cost. In this study, cellulose was extracted from SB pretreated with methyltrioctylammonium chloride under relatively mild conditions. The extracted cellulose from pretreated SB (PTB) and untreated SB (UTB) was characterized by scanning electron microscopy and FTIR. Fermentation of cellulose extracted from PTB by a thermophilic bacterium, Bacillus aestuarii UE25, yielded 245.16% higher titers of cellulase than cellulose extracted from UTB. The recyclability of the IL was assessed to make the pretreatment process cost effective and was monitored through TLC and FTIR. The results of this research demonstrated the potential of ionic liquid pretreated SB for cellulose extraction and for its subsequent utilization in thermostable cellulase production.


Assuntos
Celulose/química , Saccharum/química , Bacillus/enzimologia , Celulase/química , Celulose/isolamento & purificação , Hidrólise , Líquidos Iônicos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Curr Microbiol ; 77(9): 2422-2429, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32488408

RESUMO

This study focuses on the production of cellulase from a thermophilic bacterium Brevibacillus sp. MT5 and prospects of utilizing the enzyme preparation for the saccharification of sugarcane bagasse (SB). The data revealed that cellulase produced at 70 °C expressed an IFPU (international filter paper unit) of 1.776 when assayed at 60 °C and showed good activity towards SB. Consequently, the conditions affecting saccharification of SB were studied by employing a Plackett-Burman design and reducing sugars were determined by dinitrosalicylic acid method and glucose oxidase kit. The analysis of the design highlighted that the factors affecting the hydrolysis process varies in terms of their significance with respect to the duration of the reaction, however, agitation remained a consistent significant factor throughout the process. Gravimetric analysis displayed a reduction of 49.7 and 22.6% in cellulose content after saccharification of SB from an industry and SB from a fruit juice vendor, respectively. The effect of enzyme action on SB was further visualized by scanning electron microscopy and Fourier transform infra-red spectroscopy that showed increased porosity and a diminished peak for cellulose, indicating degradation of the substrate by the enzyme preparation.


Assuntos
Brevibacillus , Celulase , Saccharum , Celulose , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA