Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(51): e2304440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578018

RESUMO

Sodium-ion batteries have recently emerged as a promising alternative to lithium-based batteries, driven by an ever-growing demand for electricity storage systems. The present workproposes a cobalt-free high-capacity cathode for sodium-ion batteries, synthesized using a high-entropy approach. The high-entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long-term cycling. Supplement to this, lithium is introduced in the composition to obtain high configurational entropy and sodium vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 mAh g-1 (2-4 V) and 144 mAh g-1 (2-4.3 V) is observed in the first few cycles, along with a significant improvement in stability during prolonged cycling. Furthermore, in situ and ex situ diffraction studies during charging/discharging reveal that the high-entropy strategy successfully suppresses the complex phase transition. The impressive outcomes of the present work strongly motivate the pursuit of the high-entropy approach to develop efficient cathodes for sodium-ion batteries.

2.
ACS Appl Mater Interfaces ; 14(42): 47587-47594, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226899

RESUMO

The interfaces between inorganic selective contacts and halide perovskites (HaPs) are possibly the greatest challenge for making stable and reproducible solar cells with these materials. NiOx, an attractive hole-transport layer as it fits the electronic structure of HaPs, is highly stable and can be produced at a low cost. Furthermore, NiOx can be fabricated via scalable and controlled physical deposition methods such as RF sputtering to facilitate the quest for scalable, solvent-free, vacuum-deposited HaP-based solar cells (PSCs). However, the interface between NiOx and HaPs is still not well-controlled, which leads at times to a lack of stability and Voc losses. Here, we use RF sputtering to fabricate NiOx and then cover it with a NiyN layer without breaking vacuum. The NiyN layer protects NiOx doubly during PSC production. Firstly, the NiyN layer protects NiOx from Ni3+ species being reduced to Ni2+ by Ar plasma, thus maintaining NiOx conductivity. Secondly, it passivates the interface between NiOx and the HaPs, retaining PSC stability over time. This double effect improves PSC efficiency from an average of 16.5% with a 17.4% record cell to a 19% average with a 19.8% record cell and increases the device stability.

3.
Chempluschem ; 87(5): e202200036, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35499139

RESUMO

Tailoring the precise construction of non-precious metals and carbon-based heterogeneous catalysts for electrochemical oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) is crucial for energy conversion applications. Herein, this work reports the composite of Ni doped Fe2 O3 (Ni-Fe2 O3 ) with mildly oxidized multi-walled CNT (O-CNT) as an outstanding Mott-Schottky catalyst for OER and MOR. O-CNT acts as a co-catalyst which effectively regulates the charge transfer in Ni-Fe2 O3 and thus enhances the electrocatalytic performance. Ni-Fe2 O3 /O-CNT exhibits a low onset potential of 260 mV and overpotential 310 mV @ 10 mA cm-2 for oxygen evolution. Being a Mott-Schottky catalyst, it achieves the higher flat band potential of -1.15 V with the carrier density of 0.173×1024  cm-3 . Further, in presence of 1 M CH3 OH, it delivers the MOR current density of 10 mA cm-2 at 1.46 V vs. RHE. The excellent electrocatalytic OER and MOR activity of Ni-Fe2 O3 /O-CNT could be attributed to the synergistic interaction between Ni-doped Fe2 O3 and O-CNT.

4.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477493

RESUMO

A detailed investigation is presented for the solvent-free mechanochemical synthesis of zinc oxide nanoparticles from ε-Zn(OH)2 crystals by high-energy ball milling. Only a few works have ever explored the dry synthetic route from ε-Zn(OH)2 to ZnO. The milling process of ε-Zn(OH)2 was done in ambient conditions with a 1:100 powder/ball mass ratio, and it produced uniform ZnO nanoparticles with sizes of 10-30 nm, based on the milling duration. The process was carefully monitored and the effect of the milling duration on the powder composition, nanoparticle size and strain, optical properties, aggregate size, and material activity was examined using XRD, TEM, DLS, UV-Vis, and FTIR. The mechanism for the transformation of ε-Zn(OH)2 to ZnO was studied by TGA and XPS analysis. The study gave proof for a reaction mechanism starting with a phase transition of crystalline ε-Zn(OH)2 to amorphous Zn(OH)2, followed by decomposition to ZnO and water. To the best of our knowledge, this mechanochemical approach for synthesizing ZnO from ε-Zn(OH)2 is completely novel. ε-Zn(OH)2 crystals are very easy to obtain, and the milling process is done in ambient conditions; therefore, this work provides a simple, cheap, and solvent-free way to produce ZnO nanoparticles in dry conditions. We believe that this study could help to shed some light on the solvent-free transition from ε-Zn(OH)2 to ZnO and that it could offer a new synthetic route for synthesizing ZnO nanoparticles.

5.
Chem Phys Lipids ; 184: 119-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25064026

RESUMO

In our companion paper, we described the preparation and intercalation of two homologous series of dicarbonyl compounds, methyl n-oxooctadecanoates and the corresponding n-oxooctadecanoic acids (n=4-16), into DMPC liposomes. (13)C NMR chemical shift of the various carbonyls was analyzed using an E(T)(30) solvent polarity-chemical shift correlation table and the corresponding calculated penetration depth (in Å). An iterative best fit analysis of the data points revealed an exponential correlation between E(T)(30) micropolarity and the penetration depth (in Å) into the liposomal bilayer. However, this study is still incomplete, since the plot lacks data points in the important area of moderately polarity, i.e., in the E(T)(30) range of 51-45.5 kcal/mol. To correct this lacuna, a family of ketophospholipids was prepared in which the above n-oxooctadecanoic acids were attached to the sn-2 position of a phosphatidylcholine with a palmitic acid chain at sn-1. To assist in assignment and detection several derivatives were prepared (13)C-enriched in both carbonyls. The various homologs were intercalated into DMPC liposomes and give points specifically in the missing area of the previous polarity-penetration correlation graph. Interestingly, the calculated exponential relationship of the complete graph was essentially the same as that calculated in the companion paper based on the methyl n-oxooctadecanoates and the corresponding n-oxooctadecanoic acids alone. The polarity at the midplane of such DMPC systems is ca. 33 kcal/mol and is not expected to change very much if we extend the lipid chains. This paper concludes with a chemical ruler that maps the changing polarity experienced by an intercalant as it penetrates the liposomal bilayer.


Assuntos
Substâncias Intercalantes/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Dimiristoilfosfatidilcolina/química , Lipossomos/química , Termodinâmica
6.
Chem Commun (Camb) ; 47(44): 12161-3, 2011 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21986883

RESUMO

In this communication, we demonstrate that chiral self-assembled monolayers can be used for polymorphism control of chiral crystals. We studied the crystallization of DL-glutamic acid on chiral self-assembled monolayers and showed that crystallization of DL-glutamic acid on the chiral SAMs resulted in stabilization of the metastable conglomerate form.


Assuntos
Caproatos/química , Ácido Glutâmico/química , Leucina/análogos & derivados , Varredura Diferencial de Calorimetria , Cristalização , Ouro/química , Leucina/química , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA