Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(1): 100481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008260

RESUMO

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo
2.
Redox Biol ; 61: 102644, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867945

RESUMO

The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high NRF2 activity is associated with low interferon-gamma (IFNγ), HLA-I expression and T cell and macrophage infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2 overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA data shows that cancer cells of this subtype exhibit decreased expression of IFNγ responsive ligands, and increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous malignancies based on our molecular subtyping and deconvolution data.


Assuntos
Carcinoma de Células Escamosas , Fator 2 Relacionado a NF-E2 , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Ligantes , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA