Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mycopathologia ; 185(6): 993-1004, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037964

RESUMO

Stachybotrys (S.) chartarum is a cellulolytic mould with the ability to produce highly cytotoxic macrocyclic trichothecenes. Two chemotypes are defined according to their ability to produce either atranones or satratoxins. S. chartarum has been well known as the causative agent of the lethal disease stachybotryotoxicosis in horses. Further investigations revealed that this disease is strictly correlated with the presence of macrocyclic trichothecenes. Furthermore, their occurrence in water-damaged buildings has been linked to adverse health effects such as the sick building syndrome. As the chemotypes cannot be characterized via phenotypic criteria, different methods such as PCR, MALDI-TOF MS, LC-MS/MS, thin-layer chromatography and cytotoxicity assays have been used so far. Fourier-transform-infrared spectroscopy (FT-IR) is commonly used for the differentiation of bacteria and yeasts, but this technique is also applicable to filamentous fungi. Hence, this study aimed at evaluating to which extent a reliable differentiation of S. chartarum chemotypes A and S is possible. Besides, another objective was to verify if the recently introduced third genotype of S. chartarum can be identified. Therefore, 28 strains including the two chemotypes and the third genotype H were cultivated on malt extract agar (MEA) and potato dextrose agar in three biological replicates. Each sample was applied to FT-IR measurements on day 7, 14 and 21 of cultivation. In this study, we achieved a distinction of the chemotypes A and S via FT-IR spectroscopy after incubation for 7 days on MEA. In terms of genotype differentiation, the PCR detecting satratoxin- and atranone-gene clusters remained the only applicable method.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Stachybotrys , Animais , Genótipo , Cavalos , Stachybotrys/classificação
2.
Mycotoxin Res ; 36(2): 267, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32056136

RESUMO

The original version of this paper was published with error. The supplementary materials originally provided were not captured during article production.

3.
Mycotoxin Res ; 36(1): 83-91, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31435889

RESUMO

The fungus Stachybotrys (S.) chartarum was isolated from culinary herbs, damp building materials, and improperly stored animal forage. Two distinct chemotypes of the fungus were described that produced either high-cytotoxic macrocyclic trichothecenes (S type) or low-cytotoxic atranones (A type). Recently, two distinct gene clusters were described that were found to be necessary for the biosynthesis of either macrocyclic trichothecenes (21 SAT (Satratoxin) genes) or atranones (14 ATR (Atranone) genes). In the current study, PCR primers were designed to detect SAT and ATR genes in 19 S. chartarum chemotype S and eight S. chartarum chemotype A strains. Our analysis revealed the existence of three different genotypes: satratoxin-producing strains that harbored all SAT genes but lacked the ATR gene cluster (genotype S), non-satratoxin-producing strains that possessed the ATR genes but lacked SAT genes (genotype A), and a hitherto undescribed hybrid genotype among non-satratoxin-producing strains that harbored all ATR genes and an incomplete set of SAT genes (genotype H). In order to improve the discrimination of genotypes, a triplex PCR assay was developed and applied for the analysis of S. chartarum and S. chlorohalonata cultures. The results show that genes for macrocyclic trichothecenes and atranones are not mutually exclusive in S. chartarum. Correlation of the new genotype-based concept with mycotoxin production data shows also that macrocyclic trichothecenes are exclusively produced by S. chartarum genotype S strains.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Micotoxinas/genética , Stachybotrys/genética , Diterpenos , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Genes Fúngicos , Técnicas de Genotipagem , Família Multigênica , Stachybotrys/isolamento & purificação , Stachybotrys/metabolismo , Tricotecenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA