Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 107(6): 1490-1502, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36074524

RESUMO

The dromedary camel (Camelus dromedarius) is a short-day desert breeder in which female ovulation is induced by mating. Current data indicate that male-induced ovulation is triggered by its seminal plasma nerve growth factor beta (ß-NGF), but the exact mechanisms involved in the induction of ovulation are still unknown. In this study, we report that an intramuscular injection of ß-NGF in sexually active short-day-adapted female camels induces an ovulation attested by a surge of circulating LH (2-6 h after treatment) followed by an oocyte release with its cumulus oophorus (confirmed by ultrasonography 72 h after treatment) and a large and progressive increase in circulating progesterone (significant from the 2nd to the 10th days after ß-NGF injection). In addition, this ß-NGF treatment induces a broad nuclear c-FOS activation in cells located in various hypothalamic areas, notably the preoptic area, the arcuate nucleus, the dorso- and ventromedial hypothalamus, the paraventricular nucleus, and the supraoptic nucleus. A double immunostaining with neuropeptides known to be involved in the central control of reproduction indicates that ~28% kisspeptin neurons and 43% GnRH neurons in the proptic area, and ~10% RFRP-3 neurons in the dorso- and ventromedial hypothalamus are activated following ß-NGF injection. In conclusion, our study demonstrates that systemic ß-NGF induces ovulation in the female dromedary camel and indicates that this effect involves the central activation of hypothalamic neurons, notably the kisspeptin neurons.


Assuntos
Camelus , Kisspeptinas , Animais , Feminino , Masculino , Kisspeptinas/metabolismo , Camelus/metabolismo , Fator de Crescimento Neural/metabolismo , Hormônio Luteinizante/metabolismo , Ovulação/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo
2.
Sleep ; 45(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512227

RESUMO

STUDY OBJECTIVES: To investigate sleep patterns in the camel by combining behavioral and polysomnography (PSG) methods. METHODS: A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviors associated with different vigilance states. RESULTS: During the night, short periods of sporadic sleep-like behavior corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, rapid eye movement (REM) sleep, non-REM (NREM) sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night being awake (2.3 hours), ruminating (2.4 hours), or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioral postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless, or lying down on the ground). Notably, 100% of REM sleep occurred during the Head Lying Down-SR posture. CONCLUSIONS: The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioral method, provided that drowsiness is considered a part of sleep.


Assuntos
Camelus , Eletroencefalografia , Animais , Eletroencefalografia/métodos , Polissonografia/métodos , Sono , Fases do Sono , Vigília
3.
Chronobiol Int ; 39(1): 129-150, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965824

RESUMO

The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.


Assuntos
Camelus , Ritmo Circadiano , Animais , Feminino , Locomoção , Fotoperíodo , Estações do Ano
4.
Chronobiol Int ; 38(3): 415-425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33435744

RESUMO

The aim of this study was to demonstrate for the first time in Tarabul's gerbils (Gerbillus tarabuli), the effects of simultaneous exposure to two major environmental stressors - light and noise pollutions - on the body temperature rhythm and anxious behavior. Seven groups, each consisting of 6 adult male gerbils, were subjected to a standard LD cycle (12 L:12D) with lights on at 08:00 h and off at 20:00 h, constant conditions (total darkness, DD), prolonged nighttime exposure to light (PEL: 18 L:6D) with lights on at 08:00 h and off at 02:00 h, mimicking prolonged exposure to light pollution in peri-urban areas, exposure to auditory stress (TNS) of 80 dB, and conditions combining PEL&TNS. The body temperature circadian rhythm was recorded, and behavioral tests were performed at the end of experimental phases. The results revealed the existence, for the first time in Gerbilus tarabuli, of an endogenous circadian rhythm of body temperature with a period of 23.8 ± 0.04 h. Prolonged exposure to light at night (PEL) induced a significant phase delay (02 h 09 min ± 0.16 h) of the rhythm, with an acrophase (peak time) occurring at 04:42 ± 0.13 h instead of 02:33 ± 0.21 h. Exposure to TNS for 4 hours per night induced a significant increase of the amplitude of the rhythm and a decrease of the rhythm regularity (robustness of 73.26% in TNS vs. 82.32 in control condition). While combining TNS and PEL significantly delayed the phase of the Tb rhythm by 3 h 10 min (acrophase at 06:39 ± 0.37 h instead of 02:33 ± 0.21 h), increased the amplitude, and significantly reduced the stability of the rhythm (robustness of 67.25% in PEL&TNS vs. 82.32 in control condition). PEL&TNS and TNS environments induce an important stress in gerbils highlighted by a significant decrease of the number of line crossings and time spent in the center area of the open field test. Furthermore, elevated plus maze test revealed gerbils of the PEL&TNS and TNS conditions significantly visited the lowest number of open arms and spent a shorter amount of time in it. In addition, these conditions were responsible for less activity (total number of entries in arms) than in the control and PEL conditions. These results indicate clearly that in the desert area, peri-urban light and noise pollutions disturb the circadian rhythm components and alter the behavior of Tarabul's gerbils inducing an anxious state.


Assuntos
Ritmo Circadiano , Ruído dos Transportes , Animais , Temperatura Corporal , Escuridão , Gerbillinae , Luz , Masculino , Fotoperíodo
5.
Sci Rep ; 10(1): 19515, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177571

RESUMO

In the dromedary camel, a well-adapted desert mammal, daily ambient temperature (Ta)-cycles have been shown to synchronize the central circadian clock. Such entrainment has been demonstrated by examining two circadian outputs, body temperature and melatonin rhythms. Locomotor activity (LA), another circadian output not yet investigated in the camel, may provide further information on such specific entrainment. To verify if daily LA is an endogenous rhythm and whether the desert Ta-cycle can entrain it, six dromedaries were first kept under total darkness and constant-Ta. Results showed that the LA rhythm free runs with a period of 24.8-24.9 h. After having verified that the light-dark cycle synchronizes LA, camels were subjected to a Ta-cycle with warmer temperatures during subjective days and cooler temperatures during subjective nights. Results showed that the free-running LA rhythm was entrained by the Ta-cycle with a period of exactly 24.0 h, while a 12 h Ta-cycle phase advance induced an inversion of the LA rhythm and advanced the acrophase by 9 h. Similarly, activity onset and offset were significantly advanced. All together, these results demonstrate that the Ta-cycle is a strong zeitgeber, able to entrain the camel LA rhythm, hence corroborating previous results concerning the Ta non-photic synchronization of the circadian master clock.


Assuntos
Camelus/fisiologia , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Animais , Relógios Circadianos , Interpretação Estatística de Dados , Feminino , Fotoperíodo , Temperatura
6.
Theriogenology ; 154: 203-211, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663620

RESUMO

Camels are highly adapted to harsh environments. The dromedary camel is adapted to a wide range of arid and semi-arid conditions. The aim of the present paper is to review some of the key adaptation characteristics of the dromedary and how they affect reproductive patterns. Special attention is given to the reproductive seasonality and interaction between lactation and reproduction. Adaptive mechanisms are described including some of the recent molecular aspects with respect to heat shock protein expression in camels.


Assuntos
Camelus , Gado , Animais , Feminino , Lactação , Reprodução
7.
J Pineal Res ; 68(3): e12634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32011000

RESUMO

In desert areas, mammals such as camel and goat are exposed to harsh environmental conditions. The ambient temperature (Ta) cycles have been shown to entrain the circadian clock in the camel. In the present work, we assumed that, in the goat living in a desert biotope, Ta cycles would have the same synchronizing effect on the central clock. Therefore, the effects of Ta cycles on body temperature (Tb), locomotor activity (LA) and melatonin (Mel) rhythms as outputs of the master circadian clock have been studied. The study was performed on bucks kept first under constant conditions of total darkness (DD) and constant Ta, then maintained under DD conditions but exposed to Ta cycles with heat period during subjective day and cold period during subjective night. Finally, the Ta cycles were reversed with highest temperatures during the subjective night and the lowest temperatures during the subjective day. Under constant conditions, the circadian rhythms of Tb and LA were free running with an endogenous period of 25.3 and 25.0 hours, respectively. Ta cycles entrained the rhythms of Tb and LA to a period of exactly 24.0 hours; while when reversed, the Ta cycles led to an inversion of Tb and LA rhythms. Similarly, Ta cycles were also able to entrain Mel rhythm, by adjusting its secretion to the cooling phase before and after Ta cycles inversion. All together, these results show that the Ta cycles entrain the master circadian clock in the goat.


Assuntos
Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Cabras/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Animais , Comportamento Animal , Clima , Masculino , Temperatura
8.
J Comp Neurol ; 528(1): 32-47, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251823

RESUMO

The dromedary camel (Camelus dromedarius) is a desert mammal whose cycles in reproductive activity ensure that the offspring's birth and weaning coincide with periods of abundant food resources and favorable climate conditions. In this study, we assessed whether kisspeptin (Kp) and arginine-phenylalanine (RF)-amide related peptide-3 (RFRP-3), two hypothalamic peptides known to regulate the mammalian hypothalamo-pituitary gonadal axis, may be involved in the seasonal control of camel's reproduction. Using specific antibodies and riboprobes, we found that Kp neurons are present in the preoptic area (POA), suprachiasmatic (SCN), and arcuate (ARC) nuclei, and that RFRP-3 neurons are present in the paraventricular (PVN), dorsomedial (DMH), and ventromedial (VMH) hypothalamic nuclei. Kp fibers are found in various hypothalamic areas, notably the POA, SCN, PVN, DMH, VMH, supraoptic nucleus, and the ventral and dorsal premammillary nucleus. RFRP-3 fibers are found in the POA, SCN, PVN, DMH, VMH, and ARC. POA and ARC Kp neurons and DMH RFRP-3 neurons display sexual dimorphism with more neurons in female than in male. Both neuronal populations display opposed seasonal variations with more Kp neurons and less RFRP-3 neurons during the breeding (December-January) than the nonbreeding (July-August) season. This study is the first describing Kp and RFRP-3 in the camel's brain with, during the winter period lower RFRP-3 expression and higher Kp expression possibly responsible for the HPG axis activation. Altogether, our data indicate the involvement of both Kp and RFRP-3 in the seasonal control of the dromedary camel's breeding activity.


Assuntos
Cruzamento , Camelus/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuropeptídeos/metabolismo , Estações do Ano , Sequência de Aminoácidos , Animais , Camelus/genética , Feminino , Hipotálamo/química , Kisspeptinas/análise , Kisspeptinas/genética , Masculino , Neuropeptídeos/análise , Neuropeptídeos/genética , Coelhos , Caracteres Sexuais
9.
Data Brief ; 27: 104653, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687452

RESUMO

This article presents data on the effect of plasmapheresis on clinical, haematological and biochemical parameters in horses following exercise and after a plasmapheresis session. This blood filtration technique was realised on six jumping horses (plasmapheresis group) that underwent three consecutive days of graded physical exercise. The control group (n = 6) went through the same exercise but was not subjected to the plasmapheresis session. Blood was sampled before and after each exercise, also at the beginning and the end of plasmapheresis session. The presented data was obtained by measuring clinical and haemato-biochemical parameters in both groups. The heart and respiratory rates and rectal temperature were recorded. In addition, the number of red blood and white cells, platelets also of lymphocytes, monocytes, eosinophils and granulocytes were counted. Other haematological parameters including, hemoglobin concentration, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration were determined. Concerning the biochemical parameters, the concentrations of albumin, globulin, total protein, glucose, alkaline phosphatase, aspartate aminotransferase, gamma glutamyl transferase, total bilirubin, lactate, creatinine kinase, urea, creatinine, calcium, sodium and potassium were measured. All parameters data were analyzed by a two-way repeated measures analysis of variance followed by Holm-Sidak post-hoc procedure to evaluate the effect of plasmapheresis and time. This paper contains data related to and supporting research articles currently published entitled "Plasmapheresis effect on haematological and biochemical parameters in athletic horses subjected to exercise" (Daden et al., 2019) [1].

10.
J Equine Vet Sci ; 81: 102785, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31668306

RESUMO

To evaluate the effect of plasmapheresis on clinical, hematological, and biochemical parameters after exercise, a plasmapheresis session was realized on six jumping horses (plasmapheresis group) that underwent three consecutive days of physical graded exercise. The control group (n = 6) went through the same exercise but not subjected to the plasmapheresis session. Seventeen milliliters of plasma/kg of body weight was harvested from each horse. The procedure was well tolerated by the horses. The plasmapheresis leads to a significant increase of the hemoglobin, hematocrit, red blood cell, white blood cell, and lymphocytes counts. Plasmapheresis induced a very significant decrease (P < .001) of albumin and globulin levels and of total protein, which were reestablished 24 hours later. Plasmapheresis also generated a very significant increase (P < .001) in sodium levels and a significant decline of potassium (P < .05) and calcium (P < .01) levels. Several other biochemical variables remained unchanged. Results also showed that, after a significant rise of lactate, aspartate aminotransferase, and creatine kinase levels which are subsequent to the exercise, the plasmapheresis session induced a very significant continuous decrease (P < .001) of these parameters. The present work has demonstrated that the plasmapheresis is able to modify the physiology after exercise and to affect both the hematology and the biochemistry of the blood hematobiochemical parameters in horses subjected to physical exercise.


Assuntos
Hematologia , Condicionamento Físico Animal , Esportes , Animais , Creatina Quinase , Cavalos , Plasmaferese/veterinária
11.
Chronobiol Int ; 36(8): 1047-1057, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31088178

RESUMO

Daily pattern of locomotor activity (LA), one of the most studied rhythms in humans and rodents, has not been widely investigated in large mammals. This is partly due to the high cost and breakability of used automatic devices. Since last decade, smartphones are becoming ubiquitous. Meanwhile, several applications detecting activity by using internal sensors were made available. In this study, we assumed that this device could be a cheaper and easier way to measure the LA rhythm in humans and large mammals, like camel and goat. A smartphone application (Nokia Mate Health), normally used to quantify physical activities in humans, was chosen for the study. To validate the rhythm data obtained from the smartphone, LA rhythm was simultaneously recorded using an automatic device, the Actiwatch-Mini®. Results showed that the smartphone provided a clear and significant daily rhythm of LA. The visual assessment of the superimposed LA rhythm's curves in all three species showed that the smartphone application displayed similar rhythms as those recorded by the Actiwatch-Mini. Highly significant positive correlation (p≤ 0.0001) exists between the two recording rhythms. The daily periods were both the same at 24.0 h. Acrophases were also significantly similar and occurring around mid-day: 11:40 ± 0.35 h vs 11:41 ± 0.35 h for the camel, 11:25 ± 0.19 h vs 11:37 ± 0.25 h for the goat and 13:04 ± 0.11 h vs 13:51 ± 0.28 h for humans using smartphone and Actiwatch, respectively. The related mesor and amplitude were also close between the two recording devices. Results indicate clearly that using smartphones constitutes a reliable cheap tool to study LA rhythm for chronobiology studies, especially in laboratories facing lack of funding.


Assuntos
Camelus/fisiologia , Ritmo Circadiano/fisiologia , Cabras/fisiologia , Locomoção/fisiologia , Smartphone , Software , Animais , Feminino , Humanos , Masculino
12.
Front Vet Sci ; 5: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594158

RESUMO

To examine a possible control of reproductive seasonality by melatonin, continual-release subcutaneous melatonin implants were inserted 4.5 months before the natural breeding season (October-April) into female camels (Melatonin-treated group). The animals were exposed to an artificial long photoperiod (16L:8D) for 41 days prior to implant placement to facilitate receptivity to the short-day signal that is expected with melatonin implants. The treated and control groups (untreated females) were maintained separately under outdoor natural conditions. Ovarian follicular development was monitored in both groups by transrectal ultrasonography and by plasma estradiol-17ß concentrations performed weekly for 8 weeks and then for 14 weeks following implant insertion. Plasma prolactin concentrations were determined at 45 and 15 days before and 0, 14, 28, 56, and 98 days after implant insertion. Plasma melatonin concentration was determined to validate response to the artificial long photoperiod and to verify the pattern of release from the implants. Results showed that the artificial long photoperiod induced a melatonin secretion peak of significantly (P < 0.05) shorter duration (about 2.5 h). Melatonin release from the implants resulted in higher circulating plasma melatonin levels during daytime and nighttime which persisted for more than 12 weeks following implants insertion. Treatment with melatonin implants advanced the onset of follicular growth activity by 3.5 months compared to untreated animals. Plasma estradiol-17ß increased gradually from the second week after the beginning of treatment to reach significantly (P < 0.01) higher concentrations (39.2 ± 6.2 to 46.4 ± 4.5 pg/ml) between the third and the fifth week post insertion of melatonin implants. Treatment with melatonin implants also induced a moderate, but significant (P < 0.05) suppressive effect on plasma prolactin concentration on the 28th day. These results demonstrate that photoperiod appears to be involved in dromedary reproductive seasonality. Melatonin implants may be a useful tool to manipulate seasonality and to improve reproductive performance in this species. Administration of subcutaneous melatonin implants during the transition period to the breeding season following an artificial signal of long photoperiod have the potential to advance the breeding season in camels by about 2.5 months.

13.
Antioxidants (Basel) ; 6(4)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211033

RESUMO

Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible mechanisms of antidiabetic activity by digestive enzyme inhibition. Eight phenolic acids were quantified in our samples including ferulic, p-hydroxybenzoic, caffeic, salicylic, syringic, sinapic, p-coumaric and chlorogenic acids. The Oat extract (2000 mg/kg) ameliorated the glucose tolerance, decreased Fasting Blood Glucose (FBG) and oxidative stress markers, including Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione (GSH) and Malondialdehyde (MDA) in rat liver and kidney. Furthermore, Metformin and Oat intake prevented anxiety, hypercholesterolemia and atherosclerosis in diabetic rats. In vivo anti-hyperglycemic effect of Oat extracts has been confirmed by their inhibitory activities on α-amylase (723.91 µg/mL and 1027.14 µg/mL) and α-glucosidase (1548.12 µg/mL & 1803.52 µg/mL) enzymes by mean of a mixed inhibition.

14.
Front Neuroanat ; 11: 103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249943

RESUMO

In mammals, biological rhythms are driven by a master circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we have demonstrated that in the camel, the daily cycle of environmental temperature is able to entrain the master clock. This raises several questions about the structure and function of the SCN in this species. The current work is the first neuroanatomical investigation of the camel SCN. We carried out a cartography and cytoarchitectural study of the nucleus and then studied its cell types and chemical neuroanatomy. Relevant neuropeptides involved in the circadian system were investigated, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP), met-enkephalin (Met-Enk), neuropeptide Y (NPY), as well as oxytocin (OT). The neurotransmitter serotonin (5-HT) and the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were also studied. The camel SCN is a large and elongated nucleus, extending rostrocaudally for 9.55 ± 0.10 mm. Based on histological and immunofluorescence findings, we subdivided the camel SCN into rostral/preoptic (rSCN), middle/main body (mSCN) and caudal/retrochiasmatic (cSCN) divisions. Among mammals, the rSCN is unusual and appears as an assembly of neurons that protrudes from the main mass of the hypothalamus. The mSCN exhibits the triangular shape described in rodents, while the cSCN is located in the retrochiasmatic area. As expected, VIP-immunoreactive (ir) neurons were observed in the ventral part of mSCN. AVP-ir neurons were located in the rSCN and mSCN. Results also showed the presence of OT-ir and TH-ir neurons which seem to be a peculiarity of the camel SCN. OT-ir neurons were either scattered or gathered in one isolated cluster, while TH-ir neurons constituted two defined populations, dorsal parvicellular and ventral magnocellular neurons, respectively. TH colocalized with VIP in some rSCN neurons. Moreover, a high density of Met-Enk-ir, 5-HT-ir and NPY-ir fibers were observed within the SCN. Both the cytoarchitecture and the distribution of neuropeptides are unusual in the camel SCN as compared to other mammals. The presence of OT and TH in the camel SCN suggests their role in the modulation of circadian rhythms and the adaptation to photic and non-photic cues under desert conditions.

15.
Front Vet Sci ; 4: 99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713816

RESUMO

Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the ß subunit of nerve growth factor (ß-NGF). ß-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, ß-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of ß-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.

16.
Physiol Rep ; 2(9)2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263204

RESUMO

In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light-dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light-dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high-amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light-dark cycle.

17.
Am J Physiol Regul Integr Comp Physiol ; 304(11): R1044-52, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23485867

RESUMO

In mammals the light-dark (LD) cycle is known to be the major cue to synchronize the circadian clock. In arid and desert areas, the camel (Camelus dromedarius) is exposed to extreme environmental conditions. Since wide oscillations of ambient temperature (Ta) are a major factor in this environment, we wondered whether cyclic Ta fluctuations might contribute to synchronization of circadian rhythms. The rhythm of body temperature (Tb) was selected as output of the circadian clock. After having verified that Tb is synchronized by the LD and free runs in continuous darkness (DD), we submitted the animals to daily cycles of Ta in LL and in DD. In both cases, the Tb rhythm was entrained to the cycle of Ta. On a 12-h phase shift of the Ta cycle, the mean phase shift of the Tb cycle ranged from a few hours in LD (1 h by cosinor, 4 h from curve peaks) to 7-8 h in LL and 12 h in DD. These results may reflect either true synchronization of the central clock by Ta daily cycles or possibly a passive effect of Ta on Tb. To resolve the ambiguity, melatonin rhythmicity was used as another output of the clock. In DD melatonin rhythms were also entrained by the Ta cycle, proving that the daily Ta cycle is able to entrain the circadian clock of the camel similar to photoperiod. By contrast, in the presence of a LD cycle the rhythm of melatonin was modified by the Ta cycle in only 2 (or 3) of 7 camels: in these specific conditions a systematic effect of Ta on the clock could not be evidenced. In conclusion, depending on the experimental conditions (DD vs. LD), the daily Ta cycle can either act as a zeitgeber or not.


Assuntos
Temperatura Corporal/fisiologia , Camelus/fisiologia , Ritmo Circadiano/fisiologia , Animais , Relógios Biológicos , Sinais (Psicologia) , Escuridão , Interpretação Estatística de Dados , Meio Ambiente , Feminino , Luz , Iluminação , Melatonina/sangue , Fotoperíodo , Termogênese/fisiologia
18.
Chronobiol Int ; 25(5): 800-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18780205

RESUMO

Arylalkylamine N-acetyltransferase (AA-NAT) is the rhythm-generating enzyme for the synthesis of pineal melatonin. Molecular investigations have revealed two biological models for the activation of AA-NAT. In rodent species, Aa-nat gene transcription is turned off during the daytime and markedly activated at night. In primates, sheep, and cows, the Aa-nat gene is constitutively transcripted with no visible daily variations. This inter-species difference in Aa-nat gene regulation leads to different daily profiles in melatonin synthesis and release. Thus, the nighttime onset of the rise in circulating melatonin is delayed and slow in rodents, whereas it is fast and sharp in sheep. In the camel (Camelus dromedarius), we have observed that circulating melatonin rises immediately after sunset, suggesting AA-NAT activity is regulated at the post-transcriptional level. In agreement with this hypothesis, we report herein the amount of Aa-nat mRNA in the camel pineal gland is high, during both the day and night with no daily variations, while melatonin concentration in the same pineal tissue is five times higher during the night than daytime.


Assuntos
Arilalquilamina N-Acetiltransferase/metabolismo , Camelus/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Glândula Pineal/enzimologia , Animais , Arilalquilamina N-Acetiltransferase/genética , Camelus/genética , Feminino , Masculino , RNA Mensageiro/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA