Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Phys A Mater Sci Process ; 129(3): 230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876320

RESUMO

Nano-patterning the semiconducting photoactive layer/back electrode interface of organic photovoltaic devices is a widely accepted approach to enhance the power conversion efficiency through the exploitation of numerous photonic and plasmonic effects. Yet, nano-patterning the semiconductor/metal interface leads to intertwined effects that impact the optical as well as the electrical characteristic of solar cells. In this work we aim to disentangle the optical and electrical effects of a nano-structured semiconductor/metal interface on the device performance. For this, we use an inverted bulk heterojunction P3HT:PCBM solar cell structure, where the nano-patterned photoactive layer/back electrode interface is realized by patterning the active layer with sinusoidal grating profiles bearing a periodicity of 300 nm or 400 nm through imprint lithography while varying the photoactive layer thickness (L PAL ) between 90 and 400 nm. The optical and electrical device characteristics of nano-patterned solar cells are compared to the characteristics of control devices, featuring a planar photoactive layer/back electrode interface. We find that patterned solar cells show for an enhanced photocurrent generation for a L PAL above 284 nm, which is not observed when using thinner active layer thicknesses. Simulating the optical characteristic of planar and patterned devices through a finite-difference time-domain approach proves for an increased light absorption in presence of a patterned electrode interface, originating from the excitation of propagating surface plasmon and dielectric waveguide modes. Evaluation of the external quantum efficiency characteristic and the voltage dependent charge extraction characteristics of fabricated planar and patterned solar cells reveals, however, that the increased photocurrents of patterned devices do not stem from an optical enhancement but from an improved charge carrier extraction efficiency in the space charge limited extraction regime. Presented findings clearly demonstrate that the improved charge extraction efficiency of patterned solar cells is linked to the periodic surface corrugation of the (back) electrode interface. Supplementary Information: The online version contains supplementary material available at 10.1007/s00339-023-06492-6.

2.
ACS Nano ; 10(12): 10768-10777, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024344

RESUMO

Ultrasound-induced liquid-phase exfoliation (UILPE) is an established method to produce single- (SLG) and few-layer (FLG) graphene nanosheets starting from graphite as a precursor. In this paper we investigate the effect of the ultrasonication power in the UILPE process carried out in either N-methyl-2-pyrrolidone (NMP) or ortho-dichlorobenzene (o-DCB). Our experimental results reveal that while the SLGs/FLGs concentration of the NMP dispersions is independent of the power of the ultrasonic bath during the UILPE process, in o-DCB it decreases as the ultrasonication power increases. Moreover, the ultrasonication power has a strong influence on the lateral size of the exfoliated SLGs/FLGs nanosheets in o-DCB. In particular, when UILPE is carried out at ∼600 W, we obtain dispersions composed of graphene nanosheets with a lateral size of 180 nm, whereas at higher power (∼1000 W) we produce graphene nanodots (GNDs) with an average diameter of ∼17 nm. The latter nanostructures exhibit a strong and almost excitation-independent photoluminescence emission in the UV/deep-blue region of the electromagnetic spectrum arising from the GNDs' intrinsic states and a less intense (and strongly excitation wavelength dependent) emission in the green/red region attributed to defect states. Notably, we also observe visible emission with near-infrared excitation at 850 and 900 nm, a fingerprint of the presence of up-conversion processes. Overall, our results highlight the crucial importance of the solvent choice for the UILPE process, which under controlled experimental conditions allows the fine-tuning of the morphological properties, such as lateral size and thickness, of the graphene nanosheets toward the realization of luminescent GNDs.

3.
ACS Appl Mater Interfaces ; 8(15): 9829-38, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27022976

RESUMO

Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm(2) V(-1) s(-1). Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 10(3) AW(-1), and 5 × 10(3), respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material's properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer.

4.
Sci Rep ; 5: 16684, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26573383

RESUMO

Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics to composites. Making use of different approaches, unfunctionalized and non-oxidized graphene sheets can be produced; among them an inexpensive and scalable method based on liquid-phase exfoliation of graphite (LPE) holds potential for applications in opto-electronics and nanocomposites. Here we have used n-octylbenzene molecules as graphene dispersion-stabilizing agents during the graphite LPE process. We have demonstrated that by tuning the ratio between organic solvents such as N-methyl-2-pyrrolidinone or ortho-dichlorobenzene, and n-octylbenzene molecules, the concentration of exfoliated graphene can be enhanced by 230% as a result of the high affinity of the latter molecules for the basal plane of graphene. The LPE processed graphene dispersions were further deposited onto solid substrates by exploiting a new deposition technique called spin-controlled drop casting, which was shown to produce uniform highly conductive and transparent graphene films.

5.
Angew Chem Int Ed Engl ; 53(39): 10355-61, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25044532

RESUMO

The technological exploitation of the extraordinary properties of graphene relies on the ability to achieve full control over the production of a high-quality material and its processing by up-scalable approaches in order to fabricate large-area films with single-layer or a few atomic-layer thickness, which might be integrated in working devices. A simple method is reported for producing homogenous dispersions of unfunctionalized and non-oxidized graphene nanosheets in N-methyl-2-pyrrolidone (NMP) by using simple molecular modules, which act as dispersion-stabilizing compounds during the liquid-phase exfoliation (LPE) process, leading to an increase in the concentration of graphene in dispersions. The LPE-processed graphene dispersion was shown to be a conductive ink. This approach opens up new avenues for the technological applications of this graphene ink as low-cost electrodes and conducting nanocomposite for electronics.

6.
Adv Mater ; 26(28): 4814-9, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24862253

RESUMO

Enhancement in the ambipolar behavior of field-effect transistors based on an n-type polymer, P(NDI2OD-T2), is obtained by co-deposition with liquid-phase exfoliated graphene. This approach provides a prospective pathway for the application of graphene-based nanocomposites for logic circuits.

7.
Nanoscale ; 6(12): 6301-14, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24733615

RESUMO

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed N = 18 armchair graphene nanoribbons (GNRs). The latter, prepared by a bottom-up solution synthesis, are expected to form solid aggregates which cannot be easily interfaced with metallic electrodes, limiting charge injection at metal-semiconductor interfaces, and are characterized by a finite size, thus by grain boundaries, which negatively affect the charge transport within the film. Both P3HT and GNRs are soluble/dispersible in organic solvents, enabling the use of a single step co-deposition process. The resulting OFETs show a three-fold increase in the charge carrier mobilities in blend films, when compared to pure P3HT devices. This behavior can be ascribed to GNRs, and aggregates thereof, facilitating the transport of the charges within the conduction channel by connecting the domains of the semiconductor film. The electronic characteristics of the devices such as the Ion/Ioff ratio are not affected by the addition of GNRs at different loads. Studies of the electrical characteristics under illumination for potential use of our blend films as organic phototransistors (OPTs) reveal a tunable photoresponse. Therefore, our strategy offers a new method towards the enhancement of the performance of OFETs, and holds potential for technological applications in (opto)electronics.

8.
J Am Chem Soc ; 134(4): 2429-33, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22225499

RESUMO

We report on the fabrication of solution-processed organic phototransistors (OPTs) based on perylenebis(dicarboximide)s (PDIs). We found that the responsivity to the photoillumination depends on the transistor's channel length and that it can be tuned by varying the device geometry. The analysis of different morphologies of the active semiconducting layer revealed that single PDI fibers exhibit the higher photoresponse when compared to more poorly organized films. The highest responsivity value of 4.08 ± 1.65 × 10(5) A/W was achieved on a multifiber-based OPT. These findings represent a step forward toward the use of organic based phototransistors as photosensors.


Assuntos
Perileno/química , Transistores Eletrônicos , Luz , Estrutura Molecular , Perileno/análogos & derivados , Processos Fototróficos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA