Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539877

RESUMO

In recent years, research on the discovery of natural compounds with potent antioxidant properties has resulted in growing interest in these compounds due to their potential therapeutic applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds, prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2 pathway by argan oil components leads to the increased expression of downstream target proteins like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase 1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2 signaling pathway by these components highlights the potential of argan oil in protecting cells from oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway, updating our knowledge on their mechanisms of action and associated health benefits.

2.
Pharmaceutics ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38140059

RESUMO

Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer.

3.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001748

RESUMO

Cancer, characterized by the unregulated growth and dissemination of malignantly transformed cells, presents a significant global health challenge. The multistage process of cancer development involves intricate biochemical and genetic alterations within target cells. Cancer chemoprevention has emerged as a vital strategy to address this complex issue to mitigate cancer's impact on healthcare systems. This approach leverages pharmacologically active agents to block, suppress, prevent, or reverse invasive cancer development. Among these agents, piperine, an active alkaloid with a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and immunomodulatory effects, has garnered attention for its potential in cancer prevention and treatment. This comprehensive review explores piperine's multifaceted role in inhibiting the molecular events and signaling pathways associated with various stages of cancer development, shedding light on its promising prospects as a versatile tool in cancer chemoprevention. Furthermore, the review will also delve into how piperine enhances the effectiveness of conventional treatments such as UV-phototherapy and TRAIL-based therapy, potentially synergizing with existing therapeutic modalities to provide more robust cancer management strategies. Finally, a crucial perspective of the long-term safety and potential side effects of piperine-based therapies and the need for clinical trials is also discussed.

4.
Molecules ; 28(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570894

RESUMO

Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.


Assuntos
Antioxidantes , Ferro , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Azeite de Oliva/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ferro/farmacologia , Peróxido de Hidrogênio/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Estresse Oxidativo , Peroxidação de Lipídeos , Glutationa/metabolismo , Fenóis/farmacologia , Superóxido Dismutase/metabolismo
5.
Antioxidants (Basel) ; 12(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671029

RESUMO

Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1ß and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.

6.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233157

RESUMO

Exposure to endotoxins (lipopolysaccharides, LPS) may lead to a potent inflammatory cytokine response and a severe impairment of metabolism, causing tissue injury. The protective effect provided by cactus seed oil (CSO), from Opuntia ficus-indica, was evaluated against LPS-induced inflammation, dysregulation of peroxisomal antioxidant, and ß-oxidation activities in the brain and the liver. In both tissues, a short-term LPS exposure increased the proinflammatory interleukine-1ß (Il-1ß), inducible Nitroxide synthase (iNos), and Interleukine-6 (Il-6). In the brain, CSO action reduced only LPS-induced iNos expression, while in the liver, CSO attenuated mainly the hepatic Il-1ß and Il-6. Regarding the peroxisomal antioxidative functions, CSO treatment (as Olive oil (OO) or Colza oil (CO) treatment) induced the hepatic peroxisomal Cat gene. Paradoxically, we showed that CSO, as well as OO or CO, treatment can timely induce catalase activity or prevent its induction by LPS, respectively, in both brain and liver tissues. On the other hand, CSO (as CO) pretreatment prevented the LPS-associated Acox1 gene and activity decreases in the liver. Collectively, CSO showed efficient neuroprotective and hepato-protective effects against LPS, by maintaining the brain peroxisomal antioxidant enzyme activities of catalase and glutathione peroxidase, and by restoring hepatic peroxisomal antioxidant and ß-oxidative capacities.


Assuntos
Opuntia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Camundongos , Azeite de Oliva/farmacologia , Opuntia/metabolismo
7.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455460

RESUMO

During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and ß-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and ß-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.

8.
Biomarkers ; 26(5): 425-433, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33843382

RESUMO

Background: Iron-overload is a well-known cause for the development of chronic liver diseases and known to induce DNA damage.Material and methods: The protective effect of argan oil (AO) from the Argania spinosa fruit and olive oil (OO) (6% AO or OO for 28 days) was evaluated on a mouse model of iron overload (3.5mg Fe2+/liter) and in human fibroblasts where DNA damage was induced via culture under hyperoxia (40% oxygen).Results: Iron treatment induced DNA damage in liver tissue while both oils were able to decrease it. We confirmed this effect in vitro in MRC-5 fibroblasts under hyperoxia. A cell-free ABTS assay suggested that improvement of liver toxicity by both oils might depend on a high content in tocopherol, phytosterol and polyphenol compounds known for their antioxidant potential. The antioxidant effect of AO was confirmed in fibroblasts by reduced intracellular peroxide levels after hyperoxia. However, we could not find a significant decrease of genes encoding pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, COX-2) or senescence markers (p16 and p21) for the oils in mouse liver.Conclusion: We found a striking effect of AO by ameliorating DNA damage after iron overload in a mouse liver model and in human fibroblasts by hyperoxia adding compelling evidence to the protective mechanisms of AO and OO.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Sobrecarga de Ferro/tratamento farmacológico , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Azeite de Oliva/farmacologia
9.
Oxid Med Cell Longev ; 2018: 6986984, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765501

RESUMO

To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.


Assuntos
Envelhecimento/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/efeitos adversos , Oxirredutases/uso terapêutico , Óleos de Plantas/uso terapêutico , Acil-CoA Oxidase , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Humanos , Oxirredutases/farmacologia , Óleos de Plantas/farmacologia
10.
Int J Mol Sci ; 18(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048364

RESUMO

Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS). Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO) or olive oil (OO) for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH) and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx). Hematoxylin-eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT) and aspartate transaminase (AST)). Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4) and Interleukin-10 (IL-10). OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs) signaling and, under LPS, an anti-inflammatory IL-10/Liver X Receptor (IL-10/LXR) route, obviously indicated the high potency and plasticity of the anti-inflammatory properties of argan oil.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Azeite de Oliva/farmacologia , Estresse Oxidativo , Óleos de Plantas/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Hepatopatias/etiologia , Hepatopatias/prevenção & controle , Camundongos , Azeite de Oliva/administração & dosagem , Azeite de Oliva/uso terapêutico , Óleos de Plantas/administração & dosagem , Óleos de Plantas/uso terapêutico
11.
Biochim Open ; 1: 51-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-29632829

RESUMO

In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme activities. AO (or OO) food supplementation reveals that, in LPS-treated mice, hepatic expression of genes involved in FAOx and gluconeogenesis was preserved. This preventive protection might be related to the recovery of the gene expressions of nuclear receptors peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα) and their coactivator peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α). These preventive mechanisms conveyed by AO against LPS-induced metabolic dysregulation might add new therapeutic potentialities in the management of human sepsis.

12.
Biochem Biophys Res Commun ; 446(3): 798-804, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24582563

RESUMO

The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRß, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRß. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism.


Assuntos
Microglia/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Óleos de Plantas/química , Sitosteroides/farmacologia , Estigmasterol/análogos & derivados , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas/genética , Receptores X do Fígado , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microglia/citologia , Opuntia/química , Receptores Nucleares Órfãos/genética , Sementes/química , Esteróis/análise , Estigmasterol/síntese química , Estigmasterol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA