Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Med ; 30(1): 80, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858657

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results. METHODS: To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity. RESULTS: We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to ß-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations. CONCLUSION: The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Músculo Esquelético , Condicionamento Físico Animal , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/genética , Músculo Esquelético/metabolismo , Camundongos , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Resistência à Insulina , Metaboloma , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Camundongos Transgênicos , Metabolômica/métodos
2.
Front Cell Neurosci ; 17: 1242828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780204

RESUMO

Introduction: Spinal muscular atrophy (SMA) is a fatal neurodegenerative disorder, characterized by motor neuron (MN) degeneration and severe muscular atrophy and caused by Survival of Motor Neuron (SMN) depletion. Therapies aimed at increasing SMN in patients have proven their efficiency in alleviating SMA symptoms but not for all patients. Thus, combinational therapies are warranted. Here, we investigated the involvement of NADPH oxidase 4 (NOX4) in SMA-induced spinal MN death and if the modulation of Nox4 activity could be beneficial for SMA patients. Methods: We analysed in the spinal cord of severe type SMA-like mice before and at the disease onset, the level of oxidative stress and Nox4 expression. Then, we tested the effect of Nox4 inhibition by GKT137831/Setanaxib, a drug presently in clinical development, by intrathecal injection on MN survival and motor behaviour. Finally, we tested if GKT137831/Setanaxib could act synergistically with FDA-validated SMN-upregulating treatment (nusinersen). Results: We show that NOX4 is overexpressed in SMA and its inhibition by GKT137831/Setanaxib protected spinal MN from SMA-induced degeneration. These improvements were associated with a significant increase in lifespan and motor behaviour of the mice. At the molecular level, GKT137831 activated the pro-survival AKT/CREB signaling pathway, leading to an increase in SMN expression in SMA MNs. Most importantly, we found that the per os administration of GKT137831 acted synergistically with a FDA-validated SMN-upregulating treatment. Conclusion: The pharmacological inhibition of NOX4 by GKT137831/Setanaxib is neuroprotector and could represent a complementary therapeutic strategy to fight against SMA.

3.
Neuropathol Appl Neurobiol ; 48(5): e12816, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35338505

RESUMO

AIM: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by survival of motor neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the unfolded protein response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.


Assuntos
Fator 6 Ativador da Transcrição , Endorribonucleases , Atrofia Muscular Espinal , Proteínas Serina-Treonina Quinases , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 1 de Ligação a X-Box , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
Transl Res ; 235: 85-101, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33746109

RESUMO

Diabetic cardiomyopathy (DCM) is a well-established complication of type 1 and type 2 diabetes associated with a high rate of morbidity and mortality. DCM is diagnosed at advanced and irreversible stages. Therefore, it is of utmost need to identify novel mechanistic pathways involved at early stages to prevent or reverse the development of DCM. In vivo experiments were performed on type 1 diabetic rats (T1DM). Functional and structural studies of the heart were executed and correlated with mechanistic assessments exploring the role of cytochromes P450 metabolites, the 20-hydroxyeicosatetraenoic acids (20-HETEs) and epoxyeicosatrienoic acids (EETs), and their crosstalk with other homeostatic signaling molecules. Our data displays that hyperglycemia results in CYP4A upregulation and CYP2C11 downregulation in the left ventricles (LV) of T1DM rats, paralleled by a differential alteration in their metabolites 20-HETEs (increased) and EETs (decreased). These changes are concomitant with reductions in cardiac outputs, LV hypertrophy, fibrosis, and increased activation of cardiac fetal and hypertrophic genes. Besides, pro-fibrotic cytokine TGF-ß overexpression and NADPH (Nox4) dependent-ROS overproduction are also correlated with the observed cardiac functional and structural modifications. Of interest, these observations are attenuated when T1DM rats are treated with 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), which blocks EETs metabolism, or N-hydroxy-N'-(4-butyl-2-methylphenol)Formamidine (HET0016), which inhibits 20-HETEs formation. Taken together, our findings confer pioneering evidence about a potential interplay between CYP450-derived metabolites and Nox4/TGF-ß axis leading to DCM. Pharmacologic interventions targeting the inhibition of 20-HETEs synthesis or the activation of EETs synthesis may offer novel therapeutic approaches to treat DCM.


Assuntos
Ácido Araquidônico/metabolismo , Cardiomiopatias/etiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Ácidos Hidroxieicosatetraenoicos/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Masculino , NADPH Oxidase 4/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA