Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Pollut ; 363(Pt 2): 125203, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481522

RESUMO

In this paper, the concentrations, origins, and carcinogenic potential of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) collected from Shalateen sediments (Sh), Red Sea, Egypt were discussed. Individual n-alkanes has fluctuated from a minimum of 17.7 µg/g dw recorded for C-9 at Sh-54 to a maximum of 2.02 × 104 µg/g dw recorded for C-12 at Sh-B1. Total n-alkanes have fluctuated from 252-1.41 × 104 µg/g with a mean of 4.84 × 104 µg/g dw. C-12 had the highest average value, and C-19 had the lowest. The total ΣPAH concentrations in sediments from Shalateen as determined by gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) ranged from 43.2 to 270 ng/g dw (averaging 95.2 ng/g dw). Carbon preference index (CPI) values were <1, consistent with the prevalence of even-C alkanes vs. the odd-C homologues. High molecular weight (HMW) PAHs were the most abundant substances affecting the collected samples. The cancer risk ranged from 2.25 × 10-5 to 4.78 × 10-2, indicating a moderate cancer risk associated with PAHs. The primary sources of PAHs in sediments included emissions from burning gasoline and diesel, biomass, and natural gas. The current study is considered one of the most important and unique with regard to the amounts and distributions of n-alkanes and PAHs in sediments along the coasts of Shalateen. It is the first baseline data documentation (GC MS/MS approach) of n-alkanes and PAHs in the Shalateen region.

2.
Sci Rep ; 14(1): 21024, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251625

RESUMO

A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process. The structure and morphology of the CAPA-SiC composite were characterized using surface area studies (BET), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), and surface morphology (SEM & TEM). To protect copper, the produced CAPA-SiC composite was mixed with commercial epoxy paint using a casting technique, and the copper surface was coated with the three components of the CAPA-SiC/epoxy paint mixture. The corrosion inhibition improvement of the CAPA-SiC/paint coating was assessed using electrochemical impedance spectroscopy followed by Tafel polarization measurements in a 3.5 wt% NaCl solution. The corrosion protection ability of the CAPA-SiC/epoxy coating was found to be outstanding at 97.4% when compared to that of a CAPA/paint coating. SEM and XRD were used to illustrate the coating on the copper surface.

3.
Water Environ Res ; 96(8): e11093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129319

RESUMO

A study was conducted on 31 surface sediments located in different sectors of the Egyptian Mediterranean coast. The sediments were analyzed for their pollution levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The sediments were collected from various depths in harbors, coastal lakes, bays, and lagoons, covering the southeastern Mediterranean of the Nile Delta region. The study aimed at determining the distribution, origin, and potential ecological impact of OCP and PCB pollutants. The researchers used the SRM method of GC-MS/MS to measure the concentration of 18 PCBs and 16 OCPs residues. The study found that the total concentration of OCPs in the samples ranged from 3.091 to 20.512 ng/g, with a mean of 8.749 ± 3.677 ng/g. The total concentration of PCB residues ranged from 2.926 to 20.77 ng/g, with a mean of 5.68 ± 3.282 ng/g. The concentration of DDTs exceeded the effect range low (ERL) (1.00) and threshold effect level (TEL) (1.19) in several stations, but it was still below the effect range median (ERM) (7.00) and the probable effect level (PEL) (4.77). This indicates a low ecological risk. The principal component analysis (PCA) was also conducted to determine the sources of all pollutants in the sediment. The PCA showed significant correlations between the concentrations of Gama-HCH and Beta-HCH (0.741), suggesting similar sources. PRACTITIONER POINTS: OCPs and PCBs residues were analyzed in the sediment of the southeastern Mediterranean. The concentration, existence, and causes of OCPs and PCBs were investigated. OCPs and PCBs ecological risk and ecotoxicological calculation were investigated in detail. Cluster analysis, PCA, and correlation coefficient were also investigated.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Hidrocarbonetos Clorados/análise , Sedimentos Geológicos/química , Egito , Praguicidas/análise , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental , Mar Mediterrâneo
4.
Sci Rep ; 14(1): 13585, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866857

RESUMO

In this study, Delonix regia seed pods (DRSPs) as a locally available material were refluxed in 90% H2SO4 to yield a novel D. regia seed pods biochar-sulfur oxide (DRB-SO). FTIR, BET, BJH, SEM, EDX, XRD, DSC and TGA were applied to investigate the characterizations of the prepared DRB-SO. Various adsorption parameters like pH effect, dye concentration effect, adsorbent dose, reaction time isotherm and kinetic study were carried out to explain the process of adsorption of methyl orange (MO) and methyl red (MR) onto DRB-SO. Langmuir's adsorption model perfectly explained the adsorption process onto the surface of DRB-SO as a monolayer. The maximum adsorption efficiency of DRB-SO was (98%) and (99.6%) for MO and MR respectively which attained after 150 min with an adsorbent dose of 0.75 g/L. The pseudo-second-order kinetic model best explained the process of adsorption of MO and MR dyes by DRB-SO. The highest observed adsorption amount was as high as 144.9 mg/g for MO dye and 285.7 mg/g for MR dye, comparable with other reported materials based on activated carbon materials. All of the outcomes signposted a prodigious perspective of the fabricated biochar composite material in wastewater treatment. Using the regenerating DRB-SO through an acid-base regeneration process, six cycles of adsorption/desorption were examined. Over the course of the cycles, there was a minor decrease in the adsorption and desorption processes. Also, it was revealed what the most plausible mechanism was for DRB-SO to absorb the ions of the MO and MR dyes.

5.
Sci Rep ; 14(1): 13021, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844483

RESUMO

Environmental pollution is a major issue today due to the release of dyestuff waste into the environment through industrial wastewater. There is a need for affordable and effective adsorbents to remove harmful dyes from industrial waste. In this study, Mandarin biochar-CO-TETA (MBCOT) adsorbent was prepared and used to remove Acid Red 73 (AR73) dye from aqueous solutions. The efficiency of dye removal was influenced by various factors such as solution pH, contact time, initial AR73 dye concentration, and MBCOT dosage. All experiments were conducted at 25 ± 2 °C, and the optimal pH was determined to be 1.5. The optimal conditions for dye removal were found to be an AR73 dye concentration of 100 mg/L, an MBCOT dosage of 1.5 g/L, and a contact time of 150 min, resulting in a 98.08% removal rate. Various models such as pseudo-first-order (PFO), pseudo-second-order (PSO), film diffusion (FD), and intraparticle diffusion (IPD) were used to determine the adsorption kinetics of AR73 dye onto MBCOT. The results showed that the PSO model best explains the AR73 dye adsorption. Furthermore, Langmuir and Freundlich's isotherm models were studied to explain the adsorption mechanism using experimental data. The adsorption capacities at equilibrium (qe) in eliminating AR73 dye varied from 92.05 to 32.15, 128.9 to 65.39, 129.25 to 91.69, 123.73 to 111.77, and 130.54 to 125.01 mg/g. The maximum adsorption capacity (Qm) was found to be 140.85 mg/g. In conclusion, this study demonstrates that biochar produced from mandarin peels has the potential to be an effective and promising adsorbent for removing AR73 dye from water.

6.
Sci Rep ; 14(1): 11583, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773106

RESUMO

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Assuntos
Carvão Vegetal , Azul de Metileno , Ulva , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Enxofre/química , Ulva/química , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
7.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750054

RESUMO

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Assuntos
Plásticos Biodegradáveis , Óleo de Rícino , Quitosana , Plastificantes , Amido , Quitosana/química , Quitosana/farmacologia , Óleo de Rícino/química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Plastificantes/química , Amido/química , Animais , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Mariposas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
8.
Chem Biodivers ; 21(8): e202400894, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38787357

RESUMO

The chemicals formed from antipyrines are flexible organic building blocks that are employed in the development of pharmaceuticals. By diazotizing (4-arylazo-3-hydroxy-2-thienyl) 4-antipyrine ketones 1a, 1b and 1c and (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketones (2a, 2b and 2c) further replaced with six other coupling components, a broad spectrum of hybrid molecules have been created. Mass spectra, NMR, FTIR, and elemental analyses have all been used to confirm the structures of the synthesised compounds. The antimicrobial screening was investigated by agar well diffusion and diluting the broth technique against both Gram-negative and positive-tested bacterial strains. (3-methyl-5-(phenylamino)-4-(4-tolylazo)-2-thienyl) 4-antipyrine ketone (2a) was found to be superior to Ciprofloxacin against test strains: Acinetobacter sp (34.33±1.15 mm), Listeria monocytogenes (29.33±1.15 mm) and Streptococcus sp. (19.33±1.15 mm). Also, good to moderate activities were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) which were recorded at 9±1 to 59.67±4.51 µg/mL and 16±4 to >512 µg/mL, respectively, using compounds 2a, 2b, and 2c. MBC/MIC ratio showed, that only, 2a and 2b have a bactericidal effect but other antipyrines with bacteriostatic strength. To conclude, it was suggested that the use of these novel synthesized (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketone derivatives molecules as a new chemical class of antimicrobial agents to perform new drug discovery in pharmaceutical preparations and medicinal research.


Assuntos
Antibacterianos , Desenho de Fármacos , Cetonas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Antipirina/farmacologia , Antipirina/química , Antipirina/análogos & derivados , Antipirina/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos
9.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644378

RESUMO

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Assuntos
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólise , Óxido de Zinco , Óxido de Zinco/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas Metálicas/química , Química Verde/métodos , Nanopartículas/química , Cinética , Catálise
10.
Sci Rep ; 14(1): 5075, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429365

RESUMO

In the present study, three process parameters optimization were assessed as controlling factors for the biogas and biomethane generation from brown algae Cystoceira myrica as the substrate using RSM for the first time. The biomass amount, Co3O4NPs dosage, and digestion time were assessed and optimized by RSM using Box-Behnken design (BBD) to determine their optimum level. BET, FTIR, TGA, XRD, SEM, XPS, and TEM were applied to illustrate the Co3O4NPs. FTIR and XRD analysis established the formation of Co3O4NPs. The kinetic investigation confirmed that the modified model of Gompertz fit the research results satisfactorily, with R2 ranging between 0.989-0.998 and 0.879-0.979 for biogas and biomethane production, respectively. The results recommended that adding Co3O4NPs at doses of 5 mg/L to C. myrica (1.5 g) significantly increases biogas yield (462 mL/g VS) compared to all other treatments. The maximum biomethane generation (96.85 mL/g VS) was obtained with C. myrica at (0 mg/L) of Co3O4NPs. The impacts of Co3O4NPs dosages on biomethane production, direct electron transfer (DIET) and reactive oxygen species (ROS) were also investigated in detail. The techno-economic study results demonstrate the financial benefits of this strategy for the biogas with the greatest net energy content, which was 2.82 kWh with a net profit of 0.60 USD/m3 of the substrate and was produced using Co3O4NPs (5 mg/L).


Assuntos
Cobalto , Nanopartículas , Óxidos , Alga Marinha , Espécies Reativas de Oxigênio , Biocombustíveis , Elétrons
11.
Sci Rep ; 14(1): 6830, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514691

RESUMO

A novel form of biochar was created by dehydration of Date palm kernel with 85% sulfuric acid. It was examined how the newly produced biochar (DPKB-S) affected the aqueous solution's capacity to extract Methylene Blue (MB) dye. The prepared DPKB-S was categorized by BET, BJH, FT-IR, SEM, EDX, DSC, and TGA analyses. The ideal pH for the MB dye adsorption by DPKB-S is 8. With 0.75 g L-1 of DPKB-S and an initial concentration of 50 ppm MB dye, Date Palm Kernel Biochar-Sulfur (DPKB-S) had the highest removal percentage of 100%. The Langmuir and Freundlich isotherm models were used to investigate the collected data. Freundlich model is the model that best covers MB dye adsorption in DPKB-S at low concentrations (0.75-1.25 g L-1) and the Langmuir model at high concentrations (1.5-1.75 g L-1). The Langmuir model maximum adsorption capacity (Qm) of the DPKB-S was 1512.30 mg g-1. Furthermore, a variety of error function models were applied to investigate the isotherm models derived data, including Marquardt's percent standard deviation (MPSD), the sum of absolute errors (EABS), the sum of the errors squared (ERRSQ), root mean square errors (RMS), Chi-square error (X2), the average relative error (ARE), average percent errors (APE), and hybrid error function (HYBRID). Kinetic data were calculated by intraparticle diffusion (IPD), pseudo-second-order (PSO), pseudo-first-order (PFO), and film diffusion (FD) models. A PSO rate model with a strong correlation (R2 = 1.00) largely regulated the adsorption rate. The removal mechanism of MB dye by DPKB-S is based on the principle that these positively charged dyes are attracted by electrostatic attraction forces due to the growth in the number of negatively charged regions at basic pH value. According to the results, DPKB-S shows promise as an affordable and competent adsorbent for the adsorption of MB dye. It can be used frequently without experiencing a discernible decrease in adsorption efficiency.

12.
Sci Rep ; 14(1): 5542, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448468

RESUMO

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Assuntos
Clorófitas , Algas Comestíveis , Nanopartículas , Saccharum , Ácidos Sulfúricos , Ulva , Celulose , Fuligem , Carbono
13.
Sci Rep ; 14(1): 2016, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263230

RESUMO

Photodegradation is considered a significant method engaged for the elimination of organic pollutants from water. In this work, hydrothermal cobalt-doped zinc oxide nanoparticles (Hy-Co-ZnO NPs) loaded with 5, 10, and 15% cobalt were prepared in a hydrothermal way and were investigated as a photocatalyst for the Ciprofloxacin (CIPF) degradation under visible irradiation using LED-light. Characterization approaches such as FTIR, XRD, XPS, DRS UV-vis spectroscopy, SEM, TEM, BET, EDX and TGA were used for the investigation of the fabricated Hy-Co-ZnO NPs. The studies indicated that 10% Hy-Co-ZnO NPs was the most efficient catalyst for the CIPF photolysis compared to ZnO NPs and other Hy-Co-ZnO NPs with 5 and 15% cobalt content. Higher photocatalytic activity (> 98%) of 20 mg/L of CIPF solution was attained within 60 min. The reaction kinetics showed that the first-order model is suitable for displaying the rate of reaction and amount of CIPF elimination with R2 = 0.9883. Moreover, Central composite design (CCD) optimization of the 10% Hy-Co-ZnO NPs was also studied.

14.
Sci Rep ; 14(1): 119, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167469

RESUMO

Magnetic activated carbon resources with a remarkably high specific surface area have been successfully synthesized using orange peels as the precursor and ZnCl2 as the activating agent. The impregnation ratio was set at 0.5, while the pyrolysis temperature spanned from 700 to 900 °C. This comprehensive study delved into the influence of activation temperatures on the resultant pore morphology and specific surface area. Optimal conditions were discerned, leading to a magnetic activated carbon material exhibiting an impressive specific surface area at 700 °C. The Brunauer-Emmett-Teller surface area reached 155.09 m2/g, accompanied by a total pore volume of 0.1768 cm3/g, and a mean pore diameter of 4.5604 nm. The material displayed noteworthy properties, with saturation magnetization (Ms) reaching 17.28 emu/g, remanence (Mr) at 0.29 emu/g, and coercivity (Hc) of 13.71 G. Additionally, the composite demonstrated super-paramagnetic behaviour at room temperature, facilitating its rapid collection within 5 s through an external magnetic field. Factors such as absorbent dose, initial concentration of the adsorbate, contact time, and pH were systematically examined. The adsorption behaviour for acid orange 7 (AO7) was found to adhere to the Temkin isotherm models (R2 = 0.997). The Langmuir isotherm model suggested a monolayer adsorption, and the calculated maximum monolayer capacity (Qm) was 357.14 mg/g, derived from the linear solvation of the Langmuir model using 0.75 g/L as an adsorbent dose and 150-500 mg/L as AO7 dye concentrations. The pseudo-second order model proved to be the best fit for the experimental data of AO7 dye adsorption, with a high coefficient of determination (R2) ranging from 0.999 to 1.000, outperforming other kinetic models.

15.
Sci Rep ; 14(1): 1019, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200036

RESUMO

Ag-La-CaTiO3 was used in place of sacrificial agents to assess the influence of operational factors on hydrogen generation in a photocatalytic water splitting system. After being synthesized, the physicochemical features of this substance were accurately described. Several characterization techniques including UV-Vis spectroscopy, FTIR, XRD, XPS, EDX, SEM, TGA, DRS and BET were applied to study the prepared Ag-La-CaTiO3 photocatalyst. Ag-La-CaTiO3 shows a band in the visible wavelength between 400 and 800 nm at < 560 nm compared to the main CaTiO3 band at 350 nm. Ag 4d5s electrons transition to the conduction band (CB), which is responsible for the absorption band at ~ 560 nm (> 2.21 eV). The effects of catalyst concentration, light intensity, and beginning solution pH on the H2 generation rate may all be evaluated simultaneously using experimental design procedures. Up to a maximum threshold, where a drop in the rate of gas evolution occurs, it was confirmed that the increase in catalyst dose positively affects system productivity. The initial solution pH plays a crucial role in H2 production, and pH = 4 and 10 are the optimum pH with a higher yield of H2 production. The highest total H2 production rate, 6246.09 µmol, was obtained using a catalyst concentration of 700 mg and solution pH equal to 10 under 1200 W Vis lamp for 3 h. For prediction and optimization, a D-Optimal design was applied and the optimal results were pH 4, the catalyst dose of 645.578 mg and 1200 W with H2 production of 6031.11 µmol.

16.
Sci Rep ; 14(1): 1241, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216620

RESUMO

Iron Oxide-commercial activated carbon nanocomposite (CAC-IO) was prepared from commercial activated carbon (CAC) by the co-precipitation method, and the resulting nanocomposite was used as an adsorbent to remove hexavalent chromium (Cr6+) ions and Mordant Violet 40 (MV40) dye from wastewater. The produced materials (CAC, CAC after oxidation, and CAC-IO) were comparatively characterized using FTIR, BET, SEM, EDX TEM, VSM, and XRD techniques. The adsorption mechanism of Cr6+ ions and MV40 dye on CAC-IO was examined using Langmuir and Freundlich isotherm models.. Different models were applied to know the adsorption mechanism and it was obtained that Pseudo-second order fits the experimental data better. This means that the adsorption of the adsorbate on the nanocomposite was chemisorption. The maximum removal percent of Cr6+ ions by CAC-IO nanocomposite was 98.6% determined as 2 g L-1 adsorbent concentration, 100 mg L-1 initial pollutant concentration, solution pH = 1.6, the contact time was 3 h and the temperature was room temperature. The maximum removal percentage of Mordant Violet 40 dye (C.I. 14,745) from its solutions by CAC-IO nanocomposite was 99.92% in 100 mg L-1 of initial dye concentrations, 1.0 g L-1 of adsorbent concentration, solution pH = 2.07, the contact time was 3 h. The MV40 dye adsorption on CAC-IO was the most fitted to the Freundlich isotherm model. The maximum adsorption capacity was calculated according to the Langmuir model as 833.3 mg g-1 at 2 g L-1 of adsorbent concentration and 400 mg L-1 of initial MV40 dye concentration. The Cr6+ ions adsorption on CAC-IO was more fitted to the Freundlich model with Qmax, equal to 312.50 mg g-1 at 1 g L-1 adsorbent concentration and 400 mg L-1 of Cr6+ ions initial concentrations.

17.
Sci Rep ; 13(1): 19329, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935868

RESUMO

From the perspective of environmental protection, the highly efficient degradation of antibiotics and organic dyes in wastewater needs to be tackled as soon as possible. In this study, an ecofriendly and green cube-shaped cobalt-doped zinc oxide nanoparticles (Co-ZnO NPs) photocatalyst using Pterocladia Capillacea (P. Capillacea) water extract loaded with 5, 10, and 15% cobalt ions were formed via co-precipitation process to degrade antibiotics. The prepared Co-ZnO NPs were tested as a photocatalyst for the photodegradation of ciprofloxacin (CIPF) in the presence of a visible LED-light source. Co-ZnO NPs have been obtained through the co-precipitation method in the presence of P. Capillacea extract as a green capping agent and reducing agent, for the first time. Several characterization techniques including FTIR, XRD, BET, XPS, TEM, EDX, SEM, TGA and DRS UV-Vis spectroscopy were applied to study the prepared Co-ZnO NPs. XRD results suggested that the average size of these NPs ranged between 42.82 and 46.02 nm with a hexagonal wurtzite structure. Tauc plot shows that the optical energy bandgap of ZnO NPs (3.19 eV) gradually decreases to 2.92 eV by Co doping. Examinations showed that 5% Co-ZnO NPs was the highest efficient catalyst for the CIPF photodegradation when compared with ZnO NPs and other 10 and 15% Co-ZnO NPs. A 10 mg/L solution of CIPF was photo-degraded (100%) within the first 15 min irradiation. The kinetics showed that the first-order model is suitable for displaying the rate of reaction and amount of CIPF elimination with R2 = 0.952. Moreover, central composite design optimization of the 5% Co-doped ZnO NPs was also investigated.

18.
Sci Rep ; 13(1): 18871, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914771

RESUMO

This work examined the polycyclic aromatic hydrocarbons (PAHs) and n-alkanes quantities, sources, and hazards in sediments collected from the Egyptian Western Desert Oases namely: Dakhla, Kharga and Farafra oases. The n-alkane (C9-C20) residue concentrations have ranged from 0.66 to 2417.91 µg/g recorded for the three Oases. On the other hand, the total n-alkane ranged from 448.54 µg/g to 8442.60 µg/g. Higher carbon preference index (CPI) values (> 1.0) proposed that the natural sources could be the main contributor to n-alkanes in the Oases sediment. GC-MS/MS (selected reaction monitoring (SRM) method) was used for the determination of the ΣPAHs concentrations in the studied sediments. The ΣPAHs concentrations (ng/g, dry weight) in the studied three Oases varied from 10.18 to 790.14, 10.55 to 667.72, and from 38.27 to 362.77 for the Kharga, Dakhla and Farafra Oases, respectively. The higher molecular weight PAHs were the most abundant compounds in the collected samples. Assessing potential ecological and human health issues highlighted serious dangers for living things and people. All the investigated PAHs had cancer risk values between 1.43 × 10-4 and 1.64 × 10-1, this finding suggests that PAHs in the samples under study pose a moderate risk of cancer. The main sources of PAHs in this study are biomass, natural gas, and gasoline/diesel burning emissions.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Egito , Espectrometria de Massas em Tandem , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Medição de Risco , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China
19.
Mar Pollut Bull ; 196: 115692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871457

RESUMO

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were studied in the Nile Delta area of Egypt's southern Mediterranean for their environmental impacts, probable sources, and ecological risk assessment. Using the Gas Chromatography Triple Quadrupole technique, the residues of 16 OCPs and 18 PCBs were determined. The total OCPs content in the seawater and sediment samples ranged from 0.108 to 10.97 µg/L and 0.301 to 5.268 ng/g, respectively, while the PCBs residues had values between 0.808 and 1069.75 µg/L in seawater and between not detected and 575.50 ng/g in sediment samples. The findings of the risk evaluation showed that, except for endosulfan-I, OCPs caused little harm in seawater. However, PCB180, PCB153, PCB156, PCB126 and PCB138 posed a comparatively significant risk. The concentration of DDTs was higher than the effect range low and threshold effect level but remained below the effect range median and probable effect level, posing a minimal ecological concern.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Água/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Medição de Risco , Monitoramento Ambiental/métodos
20.
Sci Rep ; 13(1): 18306, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880272

RESUMO

In recent years, water pollution has become one of the most dangerous problems facing the world. Pollution of water with heavy metals and different dyes has caused many harmful effects on human health, living organisms and our environment. In this study, iron oxide nanomagnetic composite from Pterocladia Capillacea red algae-derived activated carbon (PCAC-IO) was synthesized by co-precipitation method using different iron salts and different base solutions. The synthesized nanocomposite was investigated with various characterization techniques such as FTIR, BET, SEM-EDX, TEM, XRD, and VSM. The obtained PCAC-IO adsorbent was used for Cr6+ ions and Mordant Violet 40 (MV40) dye removal. The adsorption mechanism of Cr6+ ions and MV40 dye on PCAC-IO was examined using several adsorption and kinetic isotherm models. Langmuir and Freundlich models were investigated using experimental data. Pseudo-first-order (PFO), Pseudo-second-order (PSO) and intraparticle diffusion models (IPDM) were applied to identify the adsorption mechanism. It has shown that the PSO kinetic model fits better with the experimental data obtained from PCAC-IO. This result can be interpreted as the adsorption of the adsorbate on the nanocomposite as chemical adsorption. The optimum conditions for maximum Cr6+ ions removal (96.88%) with PCAC-IO adsorbent occur at room temperature, 5 g L-1 adsorbent concentration, 100 mg L-1 initial pollutant concentration, pH 1 and at the end of 180 min, while maximum MV40 dye removal (99.76%), other conditions being the same, unlikely it occurred at pH 2.06 and after 45 min. The most suitable model for Cr6+ ions removal under the conditions of 1 L-1 g adsorbent concentration and 400 mg L-1 adsorbate concentration was Langmuir (Qmax = 151.52 mg g-1), while for MV40 removal it was Freundlich (Qmax = 303.03 mg g-1). We propose the use of activated carbon-supported iron oxide prepared from bio-waste material, especially from Pterocladia Capillacea red algae, as a promising adsorbent with high efficiency in the removal of Cr6+ ions and MV40 dye from aqueous media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA