Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373544

RESUMO

Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.


Assuntos
Antineoplásicos , Benzofuranos , Humanos , Bromo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Inflamação/tratamento farmacológico , Benzofuranos/farmacologia , Benzofuranos/química , Carcinogênese , Óxido Nítrico/metabolismo , Lipopolissacarídeos/toxicidade , Microambiente Tumoral
2.
Neurochem Int ; 154: 105301, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121011

RESUMO

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability worldwide. Aspirin (ASA) and clopidogrel (CLOP) are antiplatelet agents that inhibit platelet aggregation. They are implicated in worsening the intracerebral haemorrhage (ICH) risk post-TBI. However, antiplatelet drugs may also exert a neuroprotective effect post-injury. We determined the impact of ASA and CLOP treatment, alone or in combination, on ICH and brain damage in an experimental rat TBI model. We assessed changes in platelet aggregation and measured serum thromboxane by enzyme immune assay. We also explored a panel of brain damage and apoptosis biomarkers by immunoblotting. Rats were treated with ASA and/or CLOP for 48 h prior to TBI and sacrificed 48 h post-injury. In rats treated with antiplatelet agents prior to TBI, platelet aggregation was completely inhibited, and serum thromboxane was significantly decreased, compared to the TBI group without treatment. TBI increases UCHL-1 and GFAP, but decreases hexokinase expression compared to the non-injured controls. All groups treated with antiplatelet drugs prior to TBI had decreased UCH-L1 and GFAP serum levels compared to the TBI untreated group. Furthermore, the ASA and CLOP single treatments increased the hexokinase serum levels. We confirmed that αII-spectrin cleavage increased post-TBI, with the highest cleavage detected in CLOP-treated rats. Aspirin and/or CLOP treatment prior to TBI is a double-edged sword that exerts a dual effect post-injury. On one hand, ASA and CLOP single treatments increase the post-TBI ICH risk, with a further detrimental effect from the ASA + CLOP treatment. On the other hand, ASA and/or CLOP treatments are neuroprotective and result in a favourable profile of TBI injury markers. The ICH risk and the neuroprotection benefits from antiplatelet therapy should be weighed against each other to ameliorate the management of TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Clopidogrel/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Ratos
3.
Front Pharmacol ; 12: 743059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867349

RESUMO

Microglia, the resident phagocytes of the central nervous system and one of the key modulators of the innate immune system, have been shown to play a major role in brain insults. Upon activation in response to neuroinflammation, microglia promote the release of inflammatory mediators as well as promote phagocytosis. Plasma prekallikrein (PKall) has been recently implicated as a mediator of neuroinflammation; nevertheless, its role in mediating microglial activation has not been investigated yet. In the current study, we evaluate the mechanisms through which PKall contributes to microglial activation and release of inflammatory cytokines assessing PKall-related receptors and their dynamics. Murine N9-microglial cells were exposed to PKall (2.5 ng/ml), lipopolysaccharide (100 ng/ml), bradykinin (BK, 0.1 µM), and neuronal cell debris (16.5 µg protein/ml). Gene expression of bradykinin 2 receptor (B2KR), protease-activated receptor 2 (PAR-2), along with cytokines and fibrotic mediators were studied. Bioinformatic analysis was conducted to correlate altered protein changes with microglial activation. To assess receptor dynamics, HOE-140 (1 µM) and GB-83 (2 µM) were used to antagonize the B2KR and PAR-2 receptors, respectively. Also, the role of autophagy in modulating microglial response was evaluated. Data from our work indicate that PKall, LPS, BK, and neuronal cell debris resulted in the activation of microglia and enhanced expression/secretion of inflammatory mediators. Elevated increase in inflammatory mediators was attenuated in the presence of HOE-140 and GB-83, implicating the engagement of these receptors in the activation process coupled with an increase in the expression of B2KR and PAR-2. Finally, the inhibition of autophagy significantly enhanced the release of the cytokine IL-6 which were validated via bioinformatics analysis demonstrating the role of PKall in systematic and brain inflammatory processes. Taken together, we demonstrated that PKall can modulate microglial activation via the engagement of PAR-2 and B2KR where PKall acts as a neuromodulator of inflammatory processes.

4.
Front Pharmacol ; 12: 715111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566641

RESUMO

The occurrence and persistence of hepatic injury which arises from cell death and inflammation result in liver disease. The processes that lead to liver injury progression and resolution are still not fully delineated. The plasma kallikrein-kinin system (PKKS) has been shown to play diverse functions in coagulation, tissue injury, and inflammation, but its role in liver injury has not been defined yet. In this study, we have characterized the role of the PKKS at various stages of liver injury in mice, as well as the direct effects of plasma kallikrein on human hepatocellular carcinoma cell line (HepG2). Histological, immunohistochemical, and gene expression analyses were utilized to assess cell injury on inflammatory and fibrotic factors. Acute liver injury triggered by carbon tetrachloride (CCl4) injection resulted in significant upregulation of the plasma kallikrein gene (Klkb1) and was highly associated with the high mobility group box 1 gene, the marker of cell death (r = 0.75, p < 0.0005, n = 7). In addition, increased protein expression of plasma kallikrein was observed as clusters around necrotic areas. Plasma kallikrein treatment significantly increased the proliferation of CCl4-induced HepG2 cells and induced a significant increase in the gene expression of the thrombin receptor (protease activated receptor-1), interleukin 1 beta, and lectin-galactose binding soluble 3 (galectin-3) (p < 0.05, n = 4). Temporal variations in the stages of liver fibrosis were associated with an increase in the mRNA levels of bradykinin receptors: beta 1 and 2 genes (p < 0.05; n = 3-10). In conclusion, these findings indicate that plasma kallikrein may play diverse roles in liver injury, inflammation, and fibrosis, and suggest that plasma kallikrein may be a target for intervention in the states of liver injury.

5.
Antioxidants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316969

RESUMO

Among the primary contributors to cardiovascular diseases are inflammation and oxidative imbalance within the vessel walls as well as the fibrosis of rat aortic smooth muscle cell (RASMC). Bradykinin (BK) and leptin are inflammatory modulators that are linked to vascular injury. In this study, we employed tandem LC-MS/MS to identify protein signatures that encompass protein abundance in RASMC treated with BK or leptin followed by systems biology analyses to gain insight into the biological pathways and processes linked to vascular remodeling. In the study, 1837 proteins were identified in control untreated RASMC. BK altered the expression of 72 (4%) and 120 (6.5%) proteins, whereas leptin altered the expression of 189 (10.2%) and 127 (6.5%) proteins after 24 and 48 h, respectively, compared to control RASMC. BK increased the protein abundance of leptin receptor, transforming growth factor-ß. On the other hand, leptin increased the protein abundance of plasminogen activator inhibitor 1 but decreased the protein abundance of cofilin. BK and leptin induced the expression of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) and pathway analysis revealed the activation of mitogen-activated protein kinases (MAPKs) and AKT pathways. The proteome profile in response to BK and leptin revealed mechanistic interplay of multiple processes that modulate inflammation and oxidative stress signals in the vasculature.

6.
J Cell Physiol ; 235(2): 1568-1575, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310016

RESUMO

Despite increased social awareness, marketing restraints, tobacco taxation, and available smoking cessation rehab programs, active and passive smoking remain a worldwide challenging epidemic and a key risk factor for cardiovascular diseases development. Although cardiovascular (CV) protection is more pronounced in women than in men due to estrogenic effects, tobacco cigarette smoking exposure seems to alter this protection by modulating estrogen actions via undefined mechanisms. Premenopausal cigarette smoking women are at higher risk of adverse CV effects than non-smokers. In this study, we investigated the impact of cigarette smoking on early CV injury after myocardial infarction (MI) in non-menopausal female mice. Aortic arch calcification, fibrosis, reactive oxygen species, and gene expression of inflammatory and calcification genes were exaggerated in mice exposed to cigarette smoke (CS). These findings suggest that aortic injury following MI, characterized by vascular smooth muscle cells transdifferentiation, calcification, inflammation, and collagen deposition but not cardiac dysfunction is exacerbated with CS exposure. The novel findings of this study highlight the importance of aortic injury on short and long-term prognosis in CS-exposed MI females. Linking those findings to estrogen alteration is probable and entails investigation.


Assuntos
Doenças da Aorta/induzido quimicamente , Calcinose/induzido quimicamente , Fumar Cigarros/efeitos adversos , Infarto do Miocárdio/complicações , Nicotiana/efeitos adversos , Animais , Diferenciação Celular , Condrócitos , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Infarto do Miocárdio/patologia , Espécies Reativas de Oxigênio
7.
BMC Chem ; 13(1): 124, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696161

RESUMO

INTRODUCTION: New fluorinated diaryl ethers and bisarylic ketones were designed and evaluated for their anti-inflammatory effects in primary macrophages. METHODS: The synthesis of the designed molecules started from easily accessible and versatile gem-difluoro propargylic derivatives. The desired aromatic systems were obtained using Diels-Alder/aromatization sequences and this was followed by Pd-catalyzed coupling reactions and, when required, final functionalization steps. Both direct inhibitory effects on cyclooxygenase-1 or -2 activities, protein expression of cyclooxygenase-2 and nitric oxide synthase-II and the production of prostaglandin E2, the pro-inflammatory nitric oxide and interleukin-6 were evaluated in primary murine bone marrow-derived macrophages in response to lipopolysaccharide. Docking of the designed molecules in cyclooxygenase-1 or -2 was performed. RESULTS: Only fluorinated compounds exerted anti-inflammatory activities by lowering the secretion of interleukin-6, nitric oxide, and prostaglandin E2, and decreasing the protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in mouse primary macrophages exposed to lipopolysaccharide, as well as cyclooxygenase activity for some inhibitors with different efficiencies depending on the R-groups. Docking observation suggested an inhibitory role of cyclooxygenase-1 or -2 for compounds A3, A4 and A5 in addition to their capacity to inhibit nitrite, interleukin-6, and nitric oxide synthase-II and cyclooxygenase-2 expression. CONCLUSION: The new fluorinated diaryl ethers and bisarylic ketones have anti-inflammatory effects in macrophages. These fluorinated compounds have improved potential anti-inflammatory properties due to the fluorine residues in the bioactive molecules.

8.
PLoS One ; 14(5): e0216405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071151

RESUMO

Statins exert pleiotropic and beneficial anti-inflammatory and antioxidant effects. We have previously reported that macrophages treated with statins increased the expression of heme oxygenase-1 (HO-1), an inducible anti-inflammatory and cytoprotective stress protein, responsible for the degradation of heme. In the present study, we investigated the effects of atorvastatin on inflammation in mice and analyzed its mechanism of action in vivo. Air pouches were established in 8 week-old female C57BL/6J mice. Atorvastatin (5 mg/kg, i.p.) and/or tin protoporphyrin IX (SnPPIX), a heme oxygenase inhibitor (12 mg/kg, i.p.), were administered for 10 days. Zymosan, a cell wall component of Saccharomyces cerevisiae, was injected in the air pouch to trigger inflammation. Cell number and levels of inflammatory markers were determined in exudates collected from the pouch 24 hours post zymosan injection by flow cytometry, ELISA and quantitative PCR. Analysis of the mice treated with atorvastatin alone displayed increased expression of HO-1, arginase-1, C-type lectin domain containing 7A, and mannose receptor C-type 1 in the cells of the exudate of the air pouch. Flow cytometry analysis revealed an increase in monocyte/macrophage cells expressing HO-1 and in leukocytes expressing MRC-1 in response to atorvastatin. Mice treated with atorvastatin showed a significant reduction in cell influx in response to zymosan, and in the expression of proinflammatory cytokines and chemokines such as interleukin-1α, monocyte chemoattractant protein-1 and prostaglandin E2. Co-treatment of mice with atorvastatin and tin protoporphyrin IX (SnPPIX), an inhibitor of heme oxygenase, reversed the inhibitory effect of statin on cell influx and proinflammatory markers, suggesting a protective role of HO-1. Flow cytometry analysis of air pouch cell contents revealed prevalence of neutrophils and to a lesser extent of monocytes/macrophages with no significant effect of atorvastatin treatment on the modification of their relative proportion. These findings identify HO-1 as a target for the therapeutic actions of atorvastatin and highlight its potential role as an in vivo anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Atorvastatina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Proteínas de Membrana/biossíntese , Zimosan/toxicidade , Animais , Movimento Celular/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/epidemiologia , Inflamação/patologia , Macrófagos/enzimologia , Macrófagos/patologia , Metaloporfirinas/farmacologia , Camundongos , Monócitos/enzimologia , Monócitos/patologia , Neutrófilos/enzimologia , Neutrófilos/patologia , Protoporfirinas/farmacologia
9.
J Cell Biochem ; 117(5): 1176-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26477987

RESUMO

Statins have been shown to exert anti-inflammatory and anti-fibrogenic properties in the liver. In the present study, we explored the mechanisms underlying anti-fibrogenic effects of statins in isolated hepatic myofibroblasts and focused on cyclooxyegnase-2, a major anti-proliferative pathway in these cells. We show that simvastatin and fluvastatin inhibit thymidine incorporation in hMF in a dose-dependent manner. Pretreatment of cells with NS398, a COX-2 inhibitor, partially blunted this effect. cAMP levels, essential to the inhibition of hMF proliferation, were increased by statins and inhibited by non-steroidal anti-inflammatory drugs. Since statins modify prenylation of some important proteins in gene expression, we investigated the targets involved using selective inhibitors of prenyltransferases. Inhibition of geranylgeranylation resulted in the induction of COX-2 and mPGES-1. Using gel retardation assays, we further demonstrated that statins potentially activated the NFκB and CRE/E-box binding for COX-2 promoter and the binding of GC-rich regions and GATA for mPGES-1. Together these data demonstrate that statin limit hepatic myofibroblasts proliferation via a COX-2 and mPGES-1 dependent pathway. These data suggest that statin-dependent increase of prostaglandin in hMF contributes to its anti-fibrogenic effect.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Miofibroblastos/efeitos dos fármacos , Prostaglandina-E Sintases/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Fluvastatina , Fatores de Transcrição GATA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Fígado/citologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Nitrobenzenos/farmacologia , Regiões Promotoras Genéticas/genética , Prostaglandina-E Sintases/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinvastatina/farmacologia , Sulfonamidas/farmacologia
10.
Eur J Pharmacol ; 750: 66-73, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25617797

RESUMO

Cyclooxygenases (COXs) are important membrane-bound heme containing enzymes important in platelet activation and inflammation. COX-1 is constitutively expressed in most cells whereas COX-2 is an inducible isoform highly expressed in inflammatory conditions. Studies have been carried out to evaluate thiazole derivatives as anti-inflammatory molecules. In this study, we investigated the in vitro and in vivo effects of two novel thiazole derivatives compound 1 (N-[4-(4-hydroxy-3-methoxyphenyl)-1,3-thiazol-2-yl] acetamide) and compound 2 (4-(2-amino-1,3-thiazol-4-yl)-2-methoxyphenol) on prostaglandin E2 (PGE2) production and COX activity in inflammatory settings. Our results reveal a potent inhibition of both compound 1 (IC50 9.01±0.01µM) and 2 (IC50 11.65±6.20µM) (Mean±S.E.M.) on COX-2-dependent PGE2 production. We also determined whether COX-1 activity was inhibited. Using cells stably over-expressing COX-1 and human blood platelets, we showed that compound 1 is a specific inhibitor of COX-1 with IC50 (5.56×10(-8)±2.26×10(-8)µM), whereas compound 2 did not affect COX-1. Both compounds exhibit anti-inflammatory effect in the dorsal air pouch model of inflammation as shows by inhibition of PGE2 secretion. Modeling analysis of docking in the catalytic site of COX-1 or COX-2 further confirmed the difference in the effect of these two compounds. In conclusion, this study contributes to the design of new anti-inflammatory agents and to the understanding of cyclooxygenase inhibition by thiazole.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Animais , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase/metabolismo , Dinoprostona/biossíntese , Dinoprostona/metabolismo , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Células RAW 264.7 , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA