Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483866

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0281000.].

3.
Int J Biol Macromol ; 256(Pt 2): 128494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035969

RESUMO

Dextran sulfate sodium is one of the important members in the field of polysaccharide biotechnology, which can induce inflammatory bowel disease (IBD) in the gastrointestinal tract. Nevertheless, the application of astaxanthin (AST) and epigallocatechin-3-gallate (EGCG), known for their pronounced antioxidant and anti-inflammatory properties, is encumbered by limited stability and bioavailability. To surmount this challenge, dual nutritional macromolecular nanoparticles were provided for alleviating IBD. The forementioned strategy entailed the utilization of EGCG as a wall material via the Mannich reaction, resulting in the creation of specialized nanocarriers capable of mitochondrial targeting and glutathione-responsive AST delivery. In vitro investigations, these nanocarriers demonstrated an enhanced propensity for mitochondrial accumulation, leading to proficient elimination of reactive oxygen species and preservation of optimal mitochondrial membrane potential about 1.5 times stronger than free AST and EGCG. Crucially, in vivo experiments showed that the colon length of IBD mice treated with these nanocarriers increased by 51.29 % and facilitated the polarization of M2 macrophages. Moreover, the assimilation of these nanocarriers exerted a favorable impact on the composition of gut microbiota. These findings underscore the immense potential of dual nutrition nanocarriers in contemporaneously delivering hydrophobic biological activators through oral absorption, thereby presenting a highly promising avenue for combating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Sulfatos , Animais , Camundongos , Colite/induzido quimicamente , Dextranos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo , Xantofilas
4.
Food Sci Biotechnol ; 26(2): 537-543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30263576

RESUMO

The dissipation pattern of a commercial cyenopyrafen formulation sprayed at the recommended dose on Asian pears (two different species) grown at two different sites was investigated using liquid chromatography-ultraviolet detection. Samples collected randomly over 14 days were extracted using acetone, partitioned using n-hexane/dichloromethane (8/2, v/v), and purified using a Florisil solidphase extraction cartridge. The residues in field-incurred samples were confirmed via liquid chromatography-tandem mass spectrometry. The method was validated in terms of excellent linearity in the solvent (R 2=1); moreover, satisfactory recoveries (89.0-107.3%) were obtained at three fortification levels with a relative standard deviation (RSD)≤5.0% and the limits of detection and quantification of 0.0033 and 0.01 mg/kg, respectively. Although the residual levels at both sites were lower than the maximum residue limit (MRL=1 mg/kg), the dissipation at Site 2 was faster than that at Site 1. Consequently, the half-life (t1/2) in Site 2 (5.2 d) was shorter than that in Site 1 (9.8 d). Risk assessment at zero days showed acceptable daily intakes (%) of 27.25% and 24.52% at Sites 1 and 2, respectively, indicating that these fruit species are safe for consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA