Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729501

RESUMO

Therapeutic proteins have been employed for centuries and reached approximately 50 % of all drugs investigated. By 2023, they represented one of the top 10 largest-selling pharma products ($387.03 billion) and are anticipated to reach around $653.35 billion by 2030. Growth hormones, insulin, and interferon (IFN α, γ, and ß) are among the leading applied therapeutic proteins with a higher market share. Protein-based therapies have opened new opportunities to control various diseases, including metabolic disorders, tumors, and viral outbreaks. Advanced recombinant DNA biotechnology has offered the production of therapeutic proteins and peptides for vaccination, drugs, and diagnostic tools. Prokaryotic and eukaryotic expression host systems, including bacterial, fungal, animal, mammalian, and plant cells usually applied for recombinant therapeutic proteins large-scale production. However, several limitations face therapeutic protein production and applications at the commercial level, including immunogenicity, integrity concerns, protein stability, and protein degradation under different circumstances. In this regard, protein-engineering strategies such as PEGylation, glycol-engineering, Fc-fusion, albumin conjugation, and fusion, assist in increasing targeting, product purity, production yield, functionality, and the half-life of therapeutic protein circulation. Therefore, a comprehensive insight into therapeutic protein research and findings pave the way for their successful implementation, which will be discussed in the current review.


Assuntos
Peptídeos , Humanos , Peptídeos/química , Peptídeos/uso terapêutico , Animais , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Proteínas Recombinantes/uso terapêutico , Engenharia de Proteínas/métodos , Antivirais/uso terapêutico , Vírus
3.
Sci Rep ; 13(1): 15921, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741872

RESUMO

The ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of - 20.25 ± 0.35 and - 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and µg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase "RdRp" activity at IC50 of 49.23 µg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Fibrose Pulmonar , Masculino , Ratos , Animais , Lactoferrina , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , SARS-CoV-2 , Zinco
4.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624964

RESUMO

Colorectal cancer (CRC) is a malignant tumor recognized as a major cause of morbidity and mortality throughout the world. Therefore, novel liposomes of oleic acid coated with camel α-lactalbumin (α-LA coated liposomes) were developed for their potential antitumor activity against CRC, both in vitro and in DMH-induced CRC-modeled animal. In vitro results indicated the high safety of α-LA coated liposomes towards normal human cells with potent antitumor activity against Caco-2 cells at an IC50 value of 57.01 ± 3.55 µM with selectivity index of 6.92 ± 0.48. This antitumor activity has been attributed to induction of the apoptotic mechanism, as demonstrated by nuclear condensation and arrest of Caco-2 cells in sub-G1 populations. α-LA coated liposomes also revealed a significant up-regulation of the p53 gene combined with a down-regulation of the Bcl2 gene. Moreover, in vivo results revealed that treatment of induced-CRC modeled animals with α-LA coated liposomes for six weeks markedly improved the CRC-disorders; this was achieved from the significant reduction in the values of AFP, CEA, CA19.9, TNF-α, IL-1ß, MDA, and NO coupled with remarkable rise in SOD, GPx, GSH, CAT, and CD4+ levels. The histopathological findings asserted the therapeutic potential of α-LA coated liposomes in the treatment of CRC. Therefore, the present results proved the antitumor activity of α-LA coated liposomes against CRC through the restoration of impaired oxidative stress, improved immune response, and reduced inflammation.Communicated by Ramaswamy H. Sarma.

5.
Arch Microbiol ; 205(9): 315, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605001

RESUMO

The worldwide availability of lignocellulosic wastes represents a serious environmental challenge with potential opportunities. Xylanases are crucial in lignocellulosic bio-hydrolysis, but the low enzyme productivity and stability are still challenges. In the current study, Bacillus subtilis (coded ARSE2) revealed potent xylanase activity among other local isolates. The enzyme production optimization revealed that maximum enzyme production (490.58 U/mL) was achieved with 1% xylan, 1.4% peptone, and 5% NaCl at 30 °C and pH 9. Furthermore, several lignocellulosic wastes were exploited for sustainable xylanase production, where sugarcane bagasse (16%) under solid-state fermentation and woody sawdust (2%) under submerged fermentation supported the maximum enzyme titer of about 472.03 and 485.7 U/mL, respectively. The partially purified enzyme revealed two protein bands at 42 and 30 kDa. The partially purified enzyme revealed remarkable enzyme activity and stability at 50-60 °C and pH 8-9. The enzyme also revealed significant stability toward tween-80, urea, DTT, and EDTA with Vmax and Km values of 1481.5 U/mL and 0.187 mM, respectively. Additionally, the purified xylanase was applied for xylooligosaccharides production, which revealed significant antimicrobial activity toward Staphylococcus aureus with lower activity against Escherichia coli. Hence, the locally isolated Bacillus subtilis ARSE2 could fulfill the xylanase production requirements in terms of economic production at a high titer with promising enzyme characteristics. Additionally, the resultant xylooligosaccharides revealed a promising antimicrobial potential, which paves the way for other medical applications.


Assuntos
Bacillus subtilis , Saccharum , Celulose , Escherichia coli
6.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570980

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in nanotechnology due to their unique properties and potential applications in various fields, including insecticidal and antibacterial activities. The ZnO-NPs were biosynthesized by Eriobotrya japonica leaf extract and characterized by various techniques such as UV-visible (UV-vis) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential analysis. The results of SEM revealed that NPs were irregular and spherical-shaped, with a diameter between 5 and 27 nm. Meanwhile, DLS supported that the measured size distributions were 202.8 and 94.7 nm at 11.1° and 90.0°, respectively, which supported the polydisperse nature of NPs, and the corresponding zeta potential was -20.4 mV. The insecticidal activity of the produced ZnO-NPs was determined against the adult stage of coleopteran pests, Sitophilus oryzae (Linnaeus) (Curculionidae) and Tribolium castaneum (Herbst) (Tenebrionidae). The LC50 values of ZnO-NPs against adults of S. oryzae and T. castaneum at 24 h of exposure were 7125.35 and 5642.65 µg/mL, respectively, whereas the LC90 values were 121,824.56 and 66,825.76 µg/mL, respectively. Moreover, the biosynthesized nanoparticles exhibited antibacterial activity against three potato bacterial pathogens, and the size of the inhibition zone was concentration-dependent. The data showed that the inhibition zone size increased with an increase in the concentration of nanoparticles for all bacterial isolates tested. The highest inhibition zone was observed for Ralstonia solanacearum at a concentration of 5 µg/mL, followed by Pectobacterium atrosepticum and P. carotovorum. Eventually, ZnO-NPs could be successfully used as an influential agent in pest management programs against stored-product pests and potato bacterial diseases.

7.
Cancer Invest ; 41(7): 621-639, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486094

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers, closely associated with cirrhosis and fibrosis. This study aimed to assess the antitumor activity of oleic acid-liposomes (uncoated liposomes) upon coating with albumin against HCC. The in vitro studies revealed the high safety of the prepared uncoated and albumin-coated liposomes to normal HFB-4 cells (EC100 of 35.57 ± 0.17 and 79.133 ± 2.92 µM, respectively) with significant anticancer activity against HepG-2 cells with IC50 of 56.29 ± 0.91 and 26.74 ± 0.64 µM, respectively. The albumin-coated liposomes revealed superior apoptosis induction potential (80.7%) with significant upregulation of p53 gene expression (>7.0-fold), compared to OA. The in vivo study revealed that the administration of uncoated or albumin-coated liposomes (100 mg/kg) for six weeks markedly retarded the DENA-induced HCC in Wistar albino rates through regulating the liver enzymes, total bilirubin level, pro-inflammatory cytokines, and oxidative stress. Accordingly, the current study supports the in vitro and in vivo chemo-preventive feature of albumin-coated liposomes against HCC through modulation of apoptosis, improvement of the immune response, reduction of inflammation, and restoration of impaired oxidative stress, which is the first reported to the best of our knowledge.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Lipossomos , Neoplasias Hepáticas/patologia , Ácido Oleico , Albuminas
8.
Plants (Basel) ; 12(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514271

RESUMO

The application of Rhizobium spp., nitrogen-fixing plant growth-promoting rhizobacteria, as biocontrol agents to enhance systemic disease resistance against plant viral infections is a promising approach towards achieving sustainable and eco-friendly agriculture. However, their potential as antivirals and biocontrol agents is less studied. Herein, the capability of Rhizobium leguminosarum bv. viciae strain 33504-Mat209 was evaluated to promote plant growth and enhance faba bean systemic resistance against alfalfa mosaic virus (AMV) infection. Under greenhouse conditions, the soil inoculation with 3504-Mat209 resulted in notable improvements in growth and an increase in chlorophyll content. This led to a marked decrease in the disease incidence, severity, and viral accumulation level by 48, 74, and 87%, respectively. The protective effect of 33504-Mat209 was linked to significant decreases in non-enzymatic oxidative stress indicators, specifically H2O2 and MDA. Additionally, there were significant increases in the activity of reactive oxygen species scavenging enzymes, such as peroxidase (POX) and polyphenol oxidase (PPO), compared to the virus treatment. The elevated transcript levels of polyphenolic pathway genes (C4H, HCT, C3H, and CHS) and pathogenesis-related protein-1 were also observed. Out of 18 detected compounds, HPLC analysis revealed that 33504-Mat209-treated plants increased the accumulation of several compounds, such as gallic acid, chlorogenic acid, catechin, pyrocatechol, daidzein, quercetin, and cinnamic acid. Therefore, the ability of 33504-Mat209 to promote plant growth and induce systemic resistance against AMV infection has implications for utilizing 33504-Mat209 as a fertilizer and biocontrol agent. This could potentially introduce a new strategy for safeguarding crops, promoting sustainability, and ensuring environmental safety in the agricultural sector. As far as we know, this is the first study of biological control of AMV mediated by Rhizobium spp. in faba bean plants.

9.
Nutrients ; 15(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299576

RESUMO

Palm fruit pollen extract (PFPE) is a natural source of bioactive polyphenols. The primary aim of the study was to determine the antioxidant, antimicrobial, anticancer, enzyme inhibition, bovine serum albumin (BSA), and DNA-protective properties of PFPE and identify and quantify the phenolic compounds present in PFPE. The results demonstrated that PFPE exhibited potent antioxidant activity in various radical-scavenging assays, including (2,2-diphenyl-1-picrylhydrazyl) (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•), nitric oxide (NO), ferric-reducing/antioxidant power (FRAP), and total antioxidant capacity (TAC). PFPE also displayed antimicrobial activity against several pathogenic bacteria. Similarly, PFPE reduced acetylcholinesterase, tyrosinase, and α-amylase activities. PFPE has been proven to have an anticancer effect against colon carcinoma (Caco-2), hepatoma (HepG-2), and breast carcinoma (MDA) cancer cells. Apoptosis occurred in PFPE-treated cells in a dose-dependent manner, and cell cycle arrest was observed. Furthermore, in breast cancer cells, PFPE down-regulated Bcl-2 and p21 and up-regulated p53 and Caspase-9. These results show that PFPE constitutes a potential source of polyphenols for pharmaceutical, nutraceutical, and functional food applications.


Assuntos
Neoplasias , Phoeniceae , Humanos , Antioxidantes/farmacologia , Frutas/química , Acetilcolinesterase , Células CACO-2 , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Polifenóis/análise , DNA , Neoplasias/tratamento farmacológico
10.
Nutrients ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375613

RESUMO

Pomegranate juice concentrate (PJC) is a rich source of polyphenols, which exhibit significant antioxidant activity and potential health benefits for disease prevention and therapy. In this study, the polyphenolic profile of PJC was investigated for the first time, and it was found that PJC can inhibit oxidative damage to bovine serum albumin (BSA) and deoxyribonucleic acid (DNA), as well as acetylcholinesterase, α-amylase, and tyrosinase activities. The primary polyphenols identified in PJC were 4-Hydroxy-3-Methoxybenzoate, epicatechin, catechin, rutin, ferulic acid, P-coumaric acid, and cinnamic acid. Additionally, PJC demonstrated potent antibacterial effects against human pathogens such as Streptococcus mutans and Aeromonas hydrophila and dose-dependently reduced the proliferation of colorectal, breast, and hepatic cancer cells via apoptosis. Furthermore, PJC blocked B-cell lymphoma 2 (BCl-2) and the expression of a potent cyclin-dependent kinase inhibitor (P21) and enhanced tumor protein (P53) expression, compared to both untreated cells and cells treated with fluoropyrimidine 5-fluorouracil (5-FU). As a result, PJC may be a beneficial ingredient in the formulation of emerging natural-compound-based chemotherapy and functional foods and could be utilized by the food, nutraceutical, and pharmaceutical industries.


Assuntos
Anti-Infecciosos , Punica granatum , Humanos , Antioxidantes/farmacologia , Acetilcolinesterase , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios
11.
Int J Biol Macromol ; 245: 125552, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356684

RESUMO

Severe acute respiratory syndrome 2019-new coronavirus (SARS-CoV-2) is a major global challenge caused by a pandemic disease, named 'COVID-19' with no effective and selective therapy available so far. COVID-19-associated mortality is directly related to the inability to suppress the viral infection and the uncontrolled inflammatory response. So, we investigated the antiviral efficiency of the nanofabricated and well-characterized lactoferrin-coated zinc nanoparticles (Lf-Zn-NPs) on SARS-CoV-2 replication and entry into host cells. Lf-Zn-NPs showed potent inhibition of the entry of SARS-CoV-2 into the host cells by inhibition of ACE2, the SARS-CoV-2 receptor. This inhibitory activity of Lf-Zn-NPs to target the interaction between the SARS-CoV-2 spike protein and the ACE2 receptor offers potent protection against COVID-19 outbreaks. Moreover, the administration of Lf-Zn-NPs markedly improved lung fibrosis disorders, as supported by histopathological findings and monitored by the significant reduction in the values of CRP, LDH, ferritin, and D-dimer, with a remarkable rise in CD4+, lung SOD, GPx, GSH, and CAT levels. Lf-Zn-NPs revealed therapeutic efficiency against lung fibrosis owing to their anti-inflammatory, antioxidant, and ACE2-inhibiting activities. These findings suggest a promising nanomedicine agent against COVID-19 and its complications, with improved antiviral and immunomodulatory properties as well as a safer mode of action.


Assuntos
COVID-19 , Nanopartículas Metálicas , Fibrose Pulmonar , Masculino , Humanos , Ratos , SARS-CoV-2 , Lactoferrina/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Zinco , Antivirais/farmacologia , Antivirais/uso terapêutico , Animais
12.
Plants (Basel) ; 12(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299082

RESUMO

Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3-3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants.

13.
Life (Basel) ; 13(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37240728

RESUMO

Nanoparticles effectively control most plant pathogens, although research has focused more on their antimicrobial than their nematocidal properties. This study synthesized silver nanoparticles (Ag-NPs) through a green biosynthesis method using an aqueous extract of Ficus sycomorus leaves (FS-Ag-NPs). The nanoparticles were characterized using SEM, TEM, EDX, zeta sizer, and FTIR. The TEM results showed that the synthesized NPs were nanoscale and had an average particle size of 33 ± 1 nm. The elemental silver signal at 3 keV confirmed the formation of Ag-NPs from an aqueous leaf extract of F. sycomorus. The FTIR analysis revealed the existence of several functional groups in the prepared Ag-NPs. The strong-broad band detected at 3430 cm-1 indicated the stretching vibration of -OH (hydroxyl) and -NH2 (amine) groups. The nematocidal activity of biosynthesized FS-Ag-NPs has been evaluated in vitro against the root-knot nematode Meloidogyne incognita at 24, 48, and 72 h. The FS-Ag-NPs at a 200 µg/mL concentration applied for 48 h showed the highest effectiveness, with 57.62% nematode mortality. Moreover, the biosynthesized FS-Ag-NPs were also tested for their antibacterial activity against Pectobacterium carotovorum, P. atrosepticum, and Ralstonia solanacearum. With the application of nanoparticles, the reduction in bacterial growth gradually increased. The most potent activity at all concentrations was found in R. solanacearum, with values of 14.00 ± 2.16, 17.33 ± 2.05, 19.00 ± 1.41, 24.00 ± 1.41, and 26.00 ± 2.83 at concentrations of 5, 10, 15, 20, and 25 µg/mL, respectively, when compared with the positive control (Amoxicillin 25 µg) with a value of 16.33 ± 0.94. At the same time, the nanoparticles showed the lowest reduction values against P. atrosepticum when compared to the control. This study is the first report on the nematocidal activity of Ag-NPs using F. sycomorus aqueous extract, which could be a recommended treatment for managing plant-parasitic nematodes due to its simplicity, stability, cost-effectiveness, and environmentally safe nature.

14.
Carbohydr Polym ; 302: 120383, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604061

RESUMO

Bacterial cellulose (BC) is currently among the most promising natural polymers. However, the production costs and biological inactivity are still challenges. The current study exploited the enzymatically hydrolyzed prickly pear peels (PPP) for BC production, which supported about 2.94 g/L as the sole production medium. The BC production was further optimized through a central composite design, where the maximum BC production was 6.01 g/L at 68 % PPPE at pH 4 after 11 days of incubation at 20 °C. The produced BC was characterized by FT-IR spectroscopy, XRD, and SEM analysis, and the results showed that PPPE is a promising carbon source for pure BC production. The BC membrane was separately loaded with several fruit byproduct extracts to enhance its biological activity for multiple applications. BC loaded with pomegranate peel extract (BC/PPE) revealed significant broad-spectrum antimicrobial activity, followed by BC loaded with pomegranate molasses (BC/PM). The BC/PPE membrane enhanced the shelf-life storage of strawberry fruits by about 5 days, with a reduction in the fruits' weight loss of 15 % compared to the uncovered group. The current study revealed the successful application of PPE for sustainable BC production with its packaging potential for enhancing strawberry shelf-life when loaded with PPE or PM.


Assuntos
Anti-Infecciosos , Fragaria , Frutas , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia
15.
Int J Biol Macromol ; 232: 123372, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36706886

RESUMO

Biologically active phytochemicals from pumpkin reveal versatile medical applications, though little is known about their antiviral activity. The fucose-rich polysaccharide extraction conditions were optimized through Box-Behnken design and purified by column chromatography. The purified fucose-rich polysaccharide was characterized through SEM, FT-IR, 1H NMR, XRD, TGA, and GS-MS. The analysis results revealed an irregular and porous surface of the purified polysaccharide with high fucose, rhamnose, galactose, and glucose contents. The tested fucose-rich polysaccharides revealed significant antioxidant and anti-inflammatory activity at very low concentrations. The purified fucose-rich polysaccharides exerted a broad-spectrum antiviral activity against both DNA and RNA viruses, accompanied by high safety toward normal cells, where the maximum safe doses (EC100) were estimated to be about 3-3.9 mg/mL for both Vero and PBMC cell lines. Treatment of HCV, ADV7, HSV1, and HIV viruses with the purified polysaccharides showed a potent dose-dependent inhibitory activity with IC50 values of 95.475, 20.96, 5.213, and 461.75 µg/mL, respectively. This activity was hypothesized to be through inhibiting the viral entry in HCV infection and inhibiting the reverse transcriptase activity in HIV. The current study firstly reported the antioxidant, anti-inflammatory, and antiviral activities of Cucurbita maxima fucose-rich polysaccharide against several viral infections.


Assuntos
Cucurbita , Infecções por HIV , Antioxidantes/farmacologia , Antioxidantes/química , Cucurbita/química , Fucose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antivirais/farmacologia , Leucócitos Mononucleares , Polissacarídeos/farmacologia , Polissacarídeos/química
17.
Sci Rep ; 12(1): 19241, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357532

RESUMO

The promising features of most bacterial celluloses (BC) promote the continuous mining for a cost-effective production approach toward wide and sustainable applications. Herein, cantaloupe peels (CP) were successfully implemented for sustainable BC production. Results indicated that the enzymatically hydrolyzed CP supported the maximum BC production of approximately 3.49 g/L when used as a sole fermentation media. The produced BC was fabricated with polyvinyl alcohol (PVA) and chitosan (Ch), and loaded with green synthesized copper oxide nanoparticles (CuO-NPs) to improve its biological activity. The novel composite showed an antimicrobial activity against several human pathogens such as Staphylococcus aureus, Streptococcus mutans, Salmonella typhimurium, Escherichia coli, and Pseudomonas fluorescens. Furthermore, the new composite revealed a significant in vitro anticancer activity against colon (Caco-2), hepatocellular (HepG-2), and breast (MDA) cancer cells, with low IC50 of 0.48, 0.27, and 0.33 mg/mL for the three cell lines, respectively. On the other hand, the new composite was remarkably safe for human skin fibroblast (HSF) with IC50 of 1.08 mg/mL. Interestingly, the composite membranes exhibited lethal effects against all stages of larval instar and pupal stage compared with the control. In this study, we first report the diverse potential applications of BC/PVA/Ch/CuO-NPs composites based on green synthesized CuO-NPs and sustainably produced BC membrane.


Assuntos
Quitosana , Cucumis melo , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Celulose , Células CACO-2 , Escherichia coli , Bactérias , Quitosana/farmacologia , Álcool de Polivinil , Óxidos , Antibacterianos/farmacologia
18.
Sci Rep ; 12(1): 18340, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316373

RESUMO

This study aims to investigate novel applications for chicken feather waste hydrolysate through a green, sustainable process. Accordingly, an enzymatically degraded chicken feather (EDCFs) product was used as a dual carbon and nitrogen source in the production medium of bacterial cellulose (BC). The yield maximization was attained through applying experimental designs where the optimal level of each significant variable was recorded and the yield rose 2 times. The produced BC was successfully characterized by FT-IR, XRD and SEM. On the other hand, sludge from EDCFs was used as a paper coating agent. The mechanical features of the coated papers were evaluated by bulk densities, maximum load, breaking length, tensile index, Young's modulus, work to break and coating layer. The results showed a decrease in tensile index and an increase in elongation at break. These indicate more flexibility of the coated paper. The coated paper exhibits higher resistance to water vapor permeability and remarkable oil resistance compared to the uncoated one. Furthermore, the effectiveness of sludge residue in removing heavy metals was evaluated, and the sorption capacities were ordered as Cu ++ > Fe ++ > Cr ++ > Co ++ with high affinity (3.29 mg/g) toward Cu ++ and low (0.42 mg/g) towards Co ++ in the tested metal solution.


Assuntos
Plumas , Metais Pesados , Animais , Plumas/química , Galinhas , Esgotos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Metais Pesados/análise , Celulose/metabolismo
19.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297731

RESUMO

Cucumber mosaic virus (CMV) causes a significant threat to crop output sustainability and human nutrition worldwide, since it is one of the most prevalent plant viruses infecting most kinds of plants. Nowadays, different types of nanomaterials are applied as a control agent against different phytopathogens. However, their effects against viral infections are still limited. In the current study, the antiviral activities of the biosynthesized silver nanoparticles (Ag-NPs) mediated by aqueous extract of Ocimum basilicum against cucumber mosaic virus in squash (Cucurbita pepo L.) were investigated. The prepared Ag-NPs were characterized using scanning electron microscopy (SEM), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential distribution techniques. DLS, SEM, and TEM analyses showed that the Ag-NPs were spherical, with sizes ranging from 26.3 to 83 nm with an average particle size of about 32.6 nm. FTIR identified different functional groups responsible for the capping and stability of Ag-NPs. The zeta potential was reported as being -11.1 mV. Under greenhouse conditions, foliar sprays of Ag-NPs (100 µg/mL) promoted growth, delayed disease symptom development, and significantly reduced CMV accumulation levels of treated plants compared to non-treated plants. Treatment with Ag-NPs 24 h before or after CMV infection reduced CMV accumulation levels by 92% and 86%, respectively. There was also a significant increase in total soluble carbohydrates, free radical scavenging activity, antioxidant enzymes (PPO, SOD, and POX), as well as total phenolic and flavonoid content. Furthermore, systemic resistance was induced by significantly increasing the expression levels of pathogenesis-related genes (PR-1 and PR-5) and polyphenolic pathway genes (HCT and CHI). These findings suggest that Ag-NPs produced by O. basilicum could be used as an elicitor agent and as a control agent in the induction and management of plant viral infections.

20.
Biomed Pharmacother ; 153: 113499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076589

RESUMO

The healthy immune system eliminates pathogens and maintains tissue homeostasis through extraordinarily complex networks with feedback systems while avoiding potentially massive tissue destruction. Many parameters influence humoral and cellular vaccine responses, including intrinsic and extrinsic, environmental, and behavioral, nutritional, perinatal and administrative parameters. The relative contributions of persisting antibodies and immune memory as well as the determinants of immune memory induction, to protect against specific diseases are the main parameters of long-term vaccine efficacy. Natural and vaccine-induced immunity and monoclonal antibody immunotherapeutic, may be evaded by SARS-CoV-2 variants. Besides the complications of the production of COVID-19 vaccinations, there is no effective single treatment against COVID-19. However, administration of a combined treatment at different stages of COVID-19 infection may offer some cure assistance. Combination treatment of antiviral drugs and immunomodulatory drugs may reduce inflammation in critical COVID-19 patients with cytokine release syndrome. Molnupiravir, remdesivir and paxlovid are the approved antiviral agents that may reduce the recovery time. In addition, immunomodulatory drugs such as lactoferrin and monoclonal antibodies are used to control inflammatory responses in their respective auto-immune conditions. Therefore, the widespread occurrence of highly transmissible variants like Delta and Omicron indicates that there is still a lot of work to be done in designing efficient vaccines and medicines for COVID-19. In this review, we briefly discussed the immunological response against SARS-CoV-2 and the vaccines approved by the World Health Organization (WHO) for COVID-19, their mechanisms, and side effects. Moreover, we mentioned various treatment trials and strategies for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA