RESUMO
Drug delivery is the process or method of delivering a pharmacological product to have therapeutic effects on humans or animals. The use of nanoparticles to deliver medications to cells is driving the present surge in interest in improving human health. Green nanodrug delivery methods are based on chemical processes that are acceptable for the environment or that use natural biomaterials such as plant extracts and microorganisms. In this study, zinc oxide-superparamagnetic iron oxide-silver nanocomposite was synthesized via green synthesis method using Fusarium oxysporum fungi mycelia then loaded with sorafenib drug. The synthesized nanocomposites were characterized by UV-visibile spectroscopy, FTIR, TEM and SEM techniques. Sorafenib is a cancer treatment and is also known by its brand name, Nexavar. Sorafenib is the only systemic medication available in the world to treat hepatocellular carcinoma. Sorafenib, like many other chemotherapeutics, has side effects that restrict its effectiveness, including toxicity, nausea, mucositis, hypertension, alopecia, and hand-foot skin reaction. In our study, 40 male albino rats were given a single dose of diethyl nitrosamine (DEN) 60 mg/kg b.wt., followed by carbon tetrachloride 2 ml/kg b.wt. twice a week for one month. The aim of our study is using the zinc oxide-superparamagnetic iron oxide-silver nanocomposite that was synthesized by Fusarium oxysporum fungi mycelia as nanocarrier for enhancement the sorafenib anticancer effect.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Prata , Sorafenibe , Óxido de Zinco , Animais , Sorafenibe/farmacologia , Sorafenibe/química , Sorafenibe/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Prata/química , Ratos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Masculino , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Portadores de Fármacos/química , Fusarium/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanocompostos/química , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/químicaRESUMO
Water pollution and antimicrobial resistance (AMR) have become two global threats; 80% of diseases and 50% of child deaths are due to poor water quality. In this study, hydrothermal processing was employed to manufacture manganese oxide nanorods. Silver dopant was deposited on the surface of manganese oxide. XRD diffractogram confirmed the facile synthesis of Ag/Mn2O3 nanocomposite. XPS survey analysis demonstrated silver content of 9.43 atom %. Photocatalytic measurements demonstrated the outstanding efficiency of the Ag-Mn2O3 compared to virgin oxide particles under visible radiation. Degradation efficiencies Mn2O3 and Ag/Mn2O3 on methyl orange (MO) dye was found to be 53% and 85% under visible spectrum. Silver dopant was found to decrease the binding energy of valence electrons; this action could support electron-hole pair generation under visible spectrum and could promote catalytic performance. Ag/Mn2O3 NPs demonstrated most effective performance (95% removal efficiency) at pH 3; this could be ascribed to the electrostatic attraction between positively charged catalyst and the negatively charged MO. Ag/Mn2O3 demonstrated enhanced antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) (19 mm ZOI), and Gram-negative Escherichia coli (E. coli) (22 mm ZOI) respectively; the developed nanocomposite demonstrated advanced anti-film activity with inhibition percentage of 95.5% against E. coli followed by 89.5% against S. aureus.
Assuntos
Escherichia coli , Compostos de Manganês , Nanocompostos , Óxidos , Prata , Staphylococcus aureus , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Óxidos/química , Óxidos/farmacologia , Prata/química , Prata/farmacologia , Nanocompostos/química , Catálise , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Luz , Compostos Azo/química , Compostos Azo/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Processos FotoquímicosRESUMO
This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFe2O4) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFe2O4) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFe2O4 nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFe2O4 nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFe2O4 nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFe2O4 nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFe2O4 nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFe2O4 nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFe2O4 nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.
Assuntos
Antibacterianos , Biofilmes , Compostos Férricos , Nanopartículas de Magnetita , Biofilmes/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Catálise , Nanopartículas de Magnetita/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Raios Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Zinc ferrite nanoparticles (ZnF NPs) were synthesized by a green method using Psidium guava Leaves extract and characterized via structural and optical properties. The surface of ZnF NPs was stabilized with citric acid (CA) by a direct addition method to obtain (ZnF-CA NPs), and then lipase (LP) enzyme was immobilized on ZnF-CA NPs to obtain a modified ZnF-CA-LP nanocomposite (NCs). The prepared sample's photocatalytic activity against Methylene blue dye (MB) was determined. The antioxidant activity of ZnF-CA-LP NCs was measured using 1,1-diphenyl-2-picryl hydrazyl (DPPH) as a source of free radicals. In addition, the antibacterial and antibiofilm capabilities of these substances were investigated by testing them against gram-positive Staphylococcus aureus (S. aureus ATCC 25923) and gram-negative Escherichia coli (E. coli ATCC 25922) bacterial strains. The synthesized ZnF NPs were discovered to be situated at the core of the material, as determined by XRD, HRTEM, and SEM investigations, while the CA and lipase enzymes were coated in this core. The ZnF-CA-LP NCs crystallite size was around 35.0 nm at the (311) plane. Results obtained suggested that 0.01 g of ZnF-CA-LP NCs achieved 96.0% removal of 5.0 ppm of MB at pH 9.0. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that ZnF-CA-LP NCs exhibited its encouraged antimicrobial activity against S. aureus and E. coli (20.0 ± 0.512, and 27.0 ± 0.651 mm ZOI, respectively) & (1.25, and 0.625 µg/ml MIC, respectively). ZnF-CA-LP NPs showed antibiofilm percentage against S. aureus (88.4%) and E. coli (96.6%). Hence, ZnF-CA-LP NCs are promising for potential applications in environmental and biomedical uses.
Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Psidium , Nanopartículas Metálicas/química , Enzimas Imobilizadas , Lipase , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade MicrobianaRESUMO
This review presents an overview of one of the effective strategies for improving the anticancer impact of many drugs including sorafenib using a drug delivery system by employing nanoparticles that is produced through a biological system. The biological process has a lot of benefits, including being inexpensive and safe for the environment. Sorafenib is one of a multi-kinase inhibitor that inhibits molecularly targeted kinases. Because of its poor pharmacokinetic characteristics, such as fast elimination and limited water solubility, the bioavailability of Sorafenib is extremely low. More intelligent nano formulations of sorafenib have been developed to boost both the drug's target ability and bioavailability. Researchers in a wide variety of sectors, including nanomedicine, have recently been interested in the topic of nanotechnology. It is possible for the body to develop resistance to widely used drugs available for treatment of liver cancer, including sorafenib. As a result, our goal of this research is to highlight the efficacy of nanomedicine-based drug delivery system to enhance drug's cancer-fighting properties. Because of their magnetic properties, certain nanoparticle materials can be employed as a carrier for the medicine to the exact place where the cancer is located. This can lower the amount of the drug that is administered with no impact on the normal cells.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sistemas de Liberação de Fármacos por Nanopartículas , Antineoplásicos/uso terapêutico , Sistemas de Liberação de MedicamentosRESUMO
Hydroxyapatite (HA), the most common bioceramic material, offers attractive properties as a catalyst support. Highly crystalline mono-dispersed silver doped hydroxyapatite (Ag-HA) nanorods of 60 nm length was developed via hydrothermal processing. Silver dopant offered enhanced chemisorption for crystal violet (CV) contaminant. Silver was found to intensify negative charge on the catalyst surface; in this regard enhanced chemisorption of positively charged contaminants was accomplished. Silver dopant experienced decrease in the binding energy of valence electron for oxygen, calcium, and phosphorous using X-ray photoelectron spectroscopy XPS/ESCA; this finding could promote electron-hole generation and light absorption. Removal efficiency of Ag-HA nanocomposite for CV reached 88% after the synergistic effect with 1.0 mM H2O2; silver dopant could initiate H2O2 cleavage and intensify the release of active ȮH radicals. Whereas HA suffers from lack of microbial resistance; Ag-HA nanocomposite demonstrated high activity against Gram-positive (S. aureus) bacteria with zone of inhibition (ZOI) mm value of 18.0 mm, and high biofilm inhibition of 91.1%. Ag-HA nanocompsite experienced distinctive characerisitcs for utilization as green bioceramic photocatalyst for wastewater treatment.
Assuntos
Peróxido de Hidrogênio , Purificação da Água , Prata/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Durapatita , Violeta GencianaRESUMO
In this study, CoFe2O4 nanoparticles were prepared by the co-precipitation method then surface modified with Capsaicin (Capsicum annuum ssp.). The virgin CoFe2O4 NPs and Capsaicin-coated CoFe2O4 NPs (CPCF NPs) were characterized by XRD, FTIR, SEM, and TEM. The antimicrobial potential and photocatalytic degradation efficiencies of the prepared samples via Fuchsine basic (FB) were investigated. The results revealed that CoFe2O4 NPs have spherical shapes and their diameter varied from 18.0 to 30.0 nm with an average particle size of 25.0 nm. Antimicrobial activity was tested on Gram-positive (S. aureusATCC 52923) and Gram-negative (E. coli ATCC 52922) by disk diffusion and broth dilution methods to determine the zone of inhibition (ZOI) and minimum inhibitory concentration (MIC), respectively. UV-assisted photocatalytic degradation of FB was examined. Various parameters affecting the photocatalytic efficiency such as pH, initial concentration of FB, and dose of nanocatalyst were studied. The in-vitro ZOI and MIC results verified that CPCF NPs were more active upon Gram-Positive S. aureus ATCC 52923 (23.0 mm ZOI and 0.625 µg/ml MIC) than Gram-Negative E. coli ATCC 52922 (17.0 mm ZOI and 1.250 µg/ml MIC). Results obtained from the photocatalytic activity indicated that the maximum FB removal achieving 94.6% in equilibrium was observed using 20.0 mg of CPCF NPS at pH 9.0. The synthesized CPCF NPs were effective in the removal of FB and also as potent antimicrobial agent against both Gram-positive and Gram-negative bacteria with potential medical and environmental applications.
Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Capsaicina/farmacologia , Escherichia coli , Staphylococcus aureus , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cobalto/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/químicaRESUMO
The continued pollution, waste, and unequal distribution of the limited amount of fresh water on earth are pushing the world into water scarcity crisis. Consequently, development of revolutionary, cost-effective, and efficient techniques for water purification is essential. Herein, molten flux method was used for the preparation of micro-sized Al-doped SrTiO3 photocatalyst loaded with RhCr2O3 and CoOOH cocatalysts via simple impregnation method for the photo-assisted degradation of Congo red dye under UV and visible irradiation compared with P25 standard photocatalyst. In addition, photoelectrochemical analysis was conducted to reveal the separation and transfer efficiency of the photogenerated e-/h+ pairs playing the key role in photocatalysis. SEM and TEM analyses revealed that both P25 and the pristine SrTiO3 have spherical shapes, while Al-doped SrTiO3 and the sample loaded with cocatalysts have cubic shapes with a relatively higher particle size reaching 145 nm. In addition, the lowest bandgap is due to Al+3 ion doping and excessive surface oxygen vacancies, as confirmed by both UV-Vis diffuse-reflectance and XPS analyses. The loading of the cocatalysts resulted in a change in the bandgap from n-type (pristine SrTiO3 and Al-SrTiO3) into p-type (cocatalyst loaded sample) as exhibited by Mott-Schottky plots. Besides, the cocatalyst-loaded sample exhibited good performance stability after 5 cycles of the photocatalytic removal of Congo red dye. OH· radical was the primary species responsible for CR degradation as confirmed by experiments with radical scavengers. The observed performance of the prepared samples under both UV and visible light could foster the ongoing efforts towards more efficient photocatalysts for water purification.
RESUMO
This study presents the synthesis and doping of reduced graphene oxide (rGO) with synthesized porphyrin (5,15-bisdodecyl porphyrin, C12P) nanoparticles to fabricate reduced graphene oxide-porphyrin (rGO-P) nanocomposite as well as demonstrates their outstanding removal activity of azo dye and antimicrobial potential. The synthesized porphyrin, rGO, and rGO-P nanocomposites were characterised using SEM, HRTEM, Raman spectroscopy, XRD, 1H-NMR, mass spectrometry, and UV-Visible spectroscopy. The ability of the synthesized rGO-P nanocomposite was then investigated (as catalyst and/or adsorbent) to impact its removal efficacy against Congo red (CR) as a well-known toxic, mutagenic and carcinogenic synthetic dye. The findings indicated that 0.01 g of rGO-P nanocomposite achieved 78.0% removal of CR at pH 3.0. Besides, the removal efficacy was evaluated while studying many aspects i.e. pH, CR initial concentration, and rGO-P nanocomposite amount. Moreover, the minimum inhibitory concentration (MIC) and zone of inhibition (ZOI) of antimicrobial activity against pathogenic bacteria and yeast were evaluated. The antimicrobial results showed that rGO-P nanocomposite revealed the greatest antimicrobial activity against Candida albicans, Enterococcus faecalis, and Staphylococcus aureus with ZOI values of 24.3, 21.8, and 22.1 mm, respectively. Consequently, it demonstrates the substantial potential of rGO-P nanocomposite in the effective removal of pollutant dyes as well as significant antibacterial and antifungal properties.
Assuntos
Poluentes Ambientais , Grafite , Nanocompostos , Porfirinas , Purificação da Água , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos , Compostos Azo , Corantes , Vermelho Congo , Grafite/química , Nanocompostos/química , Porfirinas/farmacologiaRESUMO
Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.
Assuntos
Nanocompostos , Poluentes Químicos da Água , Antibacterianos/farmacologia , Catálise , Luz , Permanganato de Potássio , Dióxido de Silício , Titânio/farmacologia , Raios UltravioletaRESUMO
Magnesium ferrite nanoparticles (Mg Fe2O4 NPs) was synthesized by a chemical co-precipitation method and characterized via structural and optical properties. The surface of Mg Fe2O4 NPs was stabilized with citric acid (CA) by a direct addition method (CA-Mg Fe2O4 NPs), then Amoxicillin (AX) was loaded with CA-Mg Fe2O4 nanocomposites. Furthermore, their antimicrobial, and antibiofilm activities, growth curve, and effect of UV-illumination methods were examined against different pathogenic microbes. Based on XRD, HRTEM and SEM analyses, it is found that Mg Fe2O4 NPs are located at the core, while the CA and AX are coated this core. In-vitro zone of inhibition (ZOI) and minimum inhibitory concentration (MIC) results verified that AX-loaded CA-Mg Fe2O4 nanocomposites exhibited its encouraged antimicrobial activity against S. aureus, E. coli, and C. albicans (32.2, 22.0, and 19.0 mm ZOI, respectively) & (0.312, 0.625, and 1.25 µg/ml MIC, respectively). AX-CA-Mg Fe2O4 nanocomposites are showed antibiofilm percentage against S. aureus (95.34%), E. coli (93.93%), and C. albicans (76.23%). AX-CA-MgFe2O4 nanocomposites are an excellent disinfectant agents once they are excited by UV light. Membrane leakage assay explains the formation of holes on the surface of bacteria, and confirms SEM reaction mechanism. AX-loaded CA-Mg Fe2O4 NPs are promising for potential applications in biomedical uses.
Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Amoxicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes , Ácido Cítrico/farmacologia , Escherichia coli , Compostos Férricos , Iluminação , Compostos de Magnésio , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Staphylococcus aureus , Raios UltravioletaRESUMO
With recently increasing the environmental problems and expected energy crisis, it is necessary to synthesis a low-cost, efficient, and UV-light responsive photocatalyst for contaminants' degradation. The nanostructured spinel ferrite Mn0.5Zn0.5-xMgxFe2O4 NPs (x = 0.0, 0.125, 0.25, 0.375 and 0.50) were synthesized via the sol-gel method. The crystallite size was lied in nano regime ranging from 21.8 to 36.5 nm. The surface chemical composition of the Mn0.5Zn0.5-xMgxFe2O4 NPs was investigated via XPS analysis. Mossbauer spectra showed that the peaks were shifted to higher values of the maximum magnetic field as the Mg content increased, indicating that the crystallinity is enhanced while the crystal size is decreased. Also, various parameters such as the photocatalyst dose, dyes concentration, pH, point of zero charge, and the metals leaching were studied. The point of zero charge (PZC) has found at pH = 2.38. The Mn0.5Zn0.125Mg0.375Fe2O4 NPs showed an excellent UV-assisted photocatalytic activity against Chloramine T (90 % removal efficiency) and Rhodamine B (95 % removal efficiency) after 80 min as compared to pure Mn0.5Zn0.5Fe2O4 ferrite NPs. Besides, it a recyclable catalyst at least four times with a negligible reduction of photocatalytic activity with slight elements leaching. Furthermore, the Mn0.5Zn0.25Mg0.25Fe2O4 NPs showed a high antimicrobial activity towards pathogenic bacteria and yeats.
Assuntos
Anti-Infecciosos , Compostos Férricos , Fenômenos Magnéticos , ZincoRESUMO
Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV-Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms.
RESUMO
In this paper, we report a layer-by-layer approach for the preparation of a concentric recyclable composite (Co x Ni1-x Fe2O4/SiO2/TiO2; x = 0.9) designed for wastewater treatment. The prepared composite was investigated by X-ray diffraction spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy (SEM) supported with energy dispersive X-ray (EDX) spectroscopy to analyze crystallinity, average particle size, morphology and elemental composition, respectively. The antimicrobial activities of the prepared composite have been investigated against multi-drug-resistant bacteria and pathogenic fungi using a variety of experiments, such as zone of inhibition, minimum inhibitory concentration, biofilm formation and SEM with EDX analysis of the treated bacterial cells. In addition, the effects of gamma irradiation (with different doses) and UV irradiation on the antibacterial abilities of the prepared composite have been evaluated. Moreover, the effect of gamma irradiation on the crystallite size of the prepared composite has been studied under varying doses of radiation (25 kGy, 50 kGy and 100 kGy). Finally, the photocatalytic efficiency of the prepared composite was tested for halogen-lamp-assisted removal of pyridine (artificial wastewater). Various parameters affecting the efficiency of the photocatalytic degradation, such as photocatalyst dose, pyridine concentration, pH, point of zero charge and the presence of hydrogen peroxide, have been studied. Our results show that the synthesized composite has a well-crystallized semi-spherical morphology with an average particle size of 125.84 nm. In addition, it possesses a high degree of purity, as revealed by EDX elemental analysis. Interestingly, the prepared composite showed promising antibacterial abilities against almost all the tested pathogenic bacteria and unicellular fungi, and this was further improved after gamma and UV irradiation. Finally, the prepared composite was very efficient in the light-assisted degradation of pyridine and its degradation efficiency can be tuned based on various experimental parameters. This work provides a revolutionary nanomaterial-based solution for the global water shortage and water contamination by offering a new wastewater treatment technique that is recyclable, cost effective and has an acceptable time and quality of water.
RESUMO
This study reports the photocatalytic degradation of Methylene Blue (MB) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation. Antibacterial and antibiofilm activities of ferrite nanoparticles (FO NPs) were examined against some pathogenic bacteria isolated from the medical operating room surfaces. In the same context, metals-substituted spinel cobalt ferrite nanoparticles with nominal composition [MxCo1-xFe2O4 NPs; (Mâ¯=â¯Zn, Cu, Mn; xâ¯=â¯0.0, 0.25, 0.5 and 0.75)] were synthesized by citrate sol-gel method. Also, the structures of the synthesized FO NPs were characterized by X-ray diffraction, and Williamson-Hall (WH) method was used to determine the crystallite size. The estimated specific surface area is found in the range from 37.99 to 107.05â¯m2/g, between the synthesized ferrites, Zn0.5Co0.5Fe2O4 NPs have average pore radius 1.84â¯nm and the pore volume was 0.136â¯ml/g. SEM images revealed that, the synthesized FO NPs have an unique pores and uniformly distribution, while EDX spectra shows the elemental composition for the synthesized FO NPs. The elastic properties of FO NPs have been estimated using FTIR data, whereas (Mâ¯-â¯H) hysteresis loops revealed that, by replacing cobalt ions with Zn, Cu, and Mn ions the magnetic behaviour changed from ferromagnetic to paramagnetic. Results obtained from the photocatalysis indicated that Mn0.75Co0.25Fe2O4 NPs (30.0â¯mg) were a promising photocatalyst achieving 96.0% removal of MB after 100â¯min of UV-light exposure in the alkaline solution. Antibacterial results showed that the most effective combination was Zn0.75Co0.25Fe2O4 NPs (20.0â¯ppm) displaying activity against Staphylococcus aureus, Enterococcus columbae, and Aerococcus viridians by 15.0, 13.0, and 12.0â¯mm ZOI, respectively. Additionally, Zn0.75Co0.25Fe2O4 NPs were active as antibiofilm factors producing activity by 63.7, 57.9, and 45.5% towards S. aureus, A. viridians, and E. columbae, respectively. Accordingly, Zn0.75Co0.25Fe2O4 and Mn0.75Co0.25Fe2O4 NPs can be utilized in industrial, biological and medical applications.
Assuntos
Óxido de Alumínio/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobalto/farmacologia , Compostos Férricos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido de Magnésio/farmacologia , Metais/farmacologia , Nanopartículas/química , Óxido de Alumínio/síntese química , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Bactérias Gram-Positivas/crescimento & desenvolvimento , Óxido de Magnésio/síntese química , Azul de Metileno/metabolismo , Análise Espectral , Difração de Raios XRESUMO
In this study, Aspergillus niger ADM110 fungi was gamma irradiated to produce lipase enzyme and then immobilized onto magnetic barium ferrite nanoparticles (BFN) for biodiesel production. BFN were prepared by the citrate sol-gel auto-combustion method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy with energy dispersive analysis of X-ray (SEM/EDAX) analysis. The activities of free and immobilized lipase were measured at various pH and temperature values. The results indicate that BFN-Lipase (5%) can be reused in biodiesel production without any treatment with 17% loss of activity after five cycles and 66% loss in activity in the sixth cycle. The optimum reaction conditions for biodiesel production from waste cooking oil (WCO) using lipase immobilized onto BFN as a catalyst were 45 °C, 4 h and 400 rpm. Acid values of WCO and fatty acid methyl esters (FAMEs) were 1.90 and 0.182 (mg KOH/g oil), respectively. The measured flash point, calorific value and cetane number were 188 °C, 43.1 MJ/Kg and 59.5, respectively. The cloud point (-3 °C), pour point (-9 °C), water content (0.091%) and sulfur content (0.050%), were estimated as well.