RESUMO
Bee venom (B.V.) is a toxin produced naturally by honey bees with several toxic and therapeutic efficacies. It is used in the treatment of different cancer kinds like renal, hepatic, and prostate cancer. Due to its protein nature, it is degraded in the upper gastrointestinal tract. Colon-targeted drug delivery systems represent a useful tool to protect B.V. from degradation and can be administered orally instead of I.V. infusion and traditional bee stinging. In the present study, B.V. loaded enteric-coated cross-linked microspheres were prepared by emulsion cross-linking method. Percentage yield, entrapment efficiency %, swelling degree, and in-vitro release are evaluated for prepared microspheres. Free B.V., optimized microspheres formula (F3), and doxorubicin cytotoxic effects were tested by MTT assay. Results concluded that free B.V. was more effective against the growth of human prostate adenocarcinoma (PC3) cells followed by optimized microspheres than doxorubicin. But both free B.V. and doxorubicin have a cytotoxic effect on normal oral epithelial cells (OEC). According to flow cytometric analysis, the optimized microsphere formula induced apoptosis and reduced necrosis percent at IC50 concentration. Furthermore, microspheres did not affect the viability of OEC. These results revealed that microspheres have a degree of specificity for malignant cells. Therefore, it seems that this targeted formulation could be a good candidate for future clinical trials for cancer therapy.
Assuntos
Antineoplásicos , Venenos de Abelha , Neoplasias da Próstata , Animais , Antineoplásicos/farmacologia , Abelhas , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Microesferas , Tamanho da Partícula , Próstata , Neoplasias da Próstata/tratamento farmacológicoRESUMO
Skin health is vital for a healthy body. Herbal remedies have long been used for skin care, and their global use has tremendously increased over the past three decades. Although cellulite is seen as a normal condition by the medical community, it is considered a serious cosmetic concern for most affected women. Many topical anti-cellulite creams are available on the market, but unfortunately, their efficacy has not been proven scientifically. Microneedles (MNs) represent a new approach to enhance the permeation of loaded medication through the skin. In this study, the anti-cellulite effects of Vitex agnus-castus and Tamarindus indica extracts were compared using safe and effective polymeric MNs. This delivery system offers a painless alternative to the combined treatment strategy of microneedling devices and anti-cellulite products. The selected standardized extracts were evaluated for their mineral, phenolic and flavonoid contents, which are correlated to a promising antioxidant effect, as demonstrated by an in vitro radical scavenging activity assay. 3D-printing techniques were chosen for fabrication of a micromold, which is inexpensive for mass production. To ensure that MNs were sufficiently strong to perforate the skin without breaking, axial failure force was measured using a micro-mechanical test machine. The anticellulite effects of MNs were assessed using an in vivo diet-induced obesity guinea pig model. Skin properties, histopathology and inflammatory markers were examined. MNs loaded with plant extracts were statistically comparable in normalizing the oxidative state and reducing inflammation, while myeloperoxidase levels were more significantly reduced by T. indica than by V. agnus-castus. This novel delivery system opens the door for new transdermal strategies for cellulite management.
Assuntos
Celulite/tratamento farmacológico , Sistemas de Liberação de Medicamentos/instrumentação , Obesidade/complicações , Extratos Vegetais/farmacologia , Creme para a Pele/farmacologia , Administração Cutânea , Animais , Celulite/etiologia , Modelos Animais de Doenças , Feminino , Cobaias , Xarope de Milho Rico em Frutose/administração & dosagem , Xarope de Milho Rico em Frutose/efeitos adversos , Humanos , Agulhas , Extratos Vegetais/uso terapêutico , Polímeros , Impressão Tridimensional , Pele/efeitos dos fármacos , Creme para a Pele/uso terapêutico , Tamarindus/química , Vitex/químicaRESUMO
Terbinafine hydrochloride (THCl) has a broad-spectrum antifungal activity. THCl has oral bioavailability 40%, which increases dosing frequency of the drug, thus leads to some systemic side effects. Sustained release THCl nanosponges hydrogel was fabricated to deliver the drug topically. Pure THCl (drug), polyvinyl alcohol (emulsifier), and ethyl cellulose (EC, polymer to produce nanosponges) were used. THCl nanosponges were produced successfully by the emulsion solvent evaporation method. Based on a 32 full factorial design, different THCl: EC ratios and stirring rates were used as independent variables. The optimized formula selected based on the particle size and entrapment efficiency % (EE) was formulated as topical hydrogel. All formulations were found in the nanosize range except F7and F9. EE was ranged from 33.05% to 90.10%. THCl nanosponges hydrogel released more than 90% of drug after 8 h and showed the highest in vivo skin deposition and antifungal activity. The increase in drug: EC ratio was observed to increase EE and the particle size while higher stirring rate resulted in finer emulsion globules and significant reduction in EE. The drug release profile was slow from dosage form when it was incorporated in entrapped form as nanosponges rather than unentrapped one. The nanosponges hydrogel succeeded to sustain THCl release over 8 h. It showed the highest antifungal activity and skin deposition. THCl nanosponges hydrogel represents an enhanced therapeutic approach for the topical treatment of fungal infection.