Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
1.
Brain Res Bull ; 181: 109-120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093471

RESUMO

Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet ß-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase Ⅳ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3ß). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic ß-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.


Assuntos
Compostos Benzidrílicos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Glucosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteína Wnt3/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Complicações do Diabetes/etiologia , Diabetes Mellitus Experimental/induzido quimicamente , Neuropatias Diabéticas/etiologia , Transtornos da Memória/etiologia , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA