Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Heliyon ; 10(7): e28641, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571597

RESUMO

In alignment with the sustainable development goals (SDGs), recent trends in water management have been directed toward using environmentally friendly bio-based materials for removing contaminants. In this work, we prepared a biocomposite of chitosan (CS) intercalated into acid activated calcium bentonite (Bent). A thermally stable mesoporous CS-Bent composite was prepared with a zeta potential of 15.5 to -34.4 mV in the pH range of 2.22-10. The biocomposite successfully removed up to 99.2% and 50 mg/g of the antibiotic ciprofloxacin HCl (CPX) at pH 5.5 via electrostatic and hydrogen bonding forces. In a multi-component aqueous system of heavy metal and CPX, the composite was more selective to CPX than to the heavy metals and removal of CPX in this system was comparable to that in a single-component system. The composite also maintained its high adsorption efficiency in NaCl solutions which makes it suitable for treating fresh and saline solutions. The combination of CS and bent produced a biodegradable eco-friendly composite characterized with good thermal and surface properties along with efficient and selective adsorption performance.

2.
ACS Omega ; 9(11): 12881-12895, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524454

RESUMO

Green zinc oxide nanoparticles (ZnO NPs) synthesized using Stevia rebaudiana as a reducing agent were investigated as ecofriendly adsorbents for the removal of the antibiotics ciprofloxacin (CIP) and tetracycline (TET) from water. Green ZnO NPs were synthesized using a rapid novel approach that did not require annealing or calcination at high temperatures to produce mesoporous NPs with a size range of 37.36-71.33 nm, a specific surface area of 15.28 m2/g, and a negative surface charge of -15 mV at pH 5. The green ZnO NPs exhibited an antioxidant activity of 85.57% at 250 µg/mL and an antibacterial activity with MIC and MBC of 50 and 100 mg/mL, respectively, against both Escherichia coli and Staphylococcus aureus. The best adsorption performance was achieved using a 4 g/L dose and pH 5, yielding, respectively, 86.77 ± 0.82% removal and 27.07 ± 0.26 mg/g adsorption capacity for CIP at 10 mg/L and 67.86 ± 3.41% and 15.88 ± 0.37 mg/g for TET at 25 mg/L. The green ZnO NPs achieved 79.71% ± 0.28 and 61.55% ± 0.53 removal of 10 mg/L CIP and 25 mg/L TET, respectively, in a spiked tap water binary system of the two contaminants. Adsorption of CIP and TET occurred mainly via electrostatic interactions, whereby CIP was bound more strongly than TET by virtue of its charge and size. The synthesis and adsorption processes were evaluated by a stepwise regression statistical model to optimize their parameters. Lastly, the green ZnO NPs were regenerated and reused for 5 cycles, indicating their functionality as simple, reusable, and low-cost adsorbents for the removal of CIP and TET from wastewater, in accordance with SDGs #6 and 12 for the sustainable management of water.

3.
Sci Total Environ ; 912: 168740, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013102

RESUMO

In this work, a novel double-network composite hydrogel (SA/TA), composed of sodium alginate (SA) and tannic acid (TA), was designed and fabricated by a successive cross-linking method using Ti(IV) and Ca(II) as crosslinkers. SA/TA exhibited reinforced mechanical strength and anti-swelling properties because of the double-network structure. SA/TA was used as an adsorbent for removal of a popular antiviral drug, chloroquine phosphate (CQ), in water. The adsorption performance of SA/TA was systematically investigated, to study various effects including those of TA mass content, solution pH, adsorption time, and initial CQ concentration. Adsorption was also examined in presence of inorganic and organic coexisting substances commonly found in wastewater, and under different actual water samples. Batch experimental results indicated that SA/TA could maintain higher and more stable CQ uptakes within a wide solution pH range from 3.0 to 10.0, compared to its precursor, SA hydrogel, owing to the addition of TA-Ti(IV) coordination network. The maximum experimental CQ uptake exhibited by the 1:1 (by wt) SA/TA (SA/TA2) was as high as 0.699 mmol/g at the initial pH of 9.0. A high concentration of coexisting NaCl evidently reduced the CQ uptakes of SA/TA2 due to the electrostatic shielding effect, moreover, divalent cations including Ca(II) and Mg(II) also inhibited the adsorption of CQ due to competitive adsorption. However, humic acid had little effect on this adsorption. Considering the apparent adsorption performance, the aforementioned effects of various factors and the spectroscopic characterizations, multi-interactions are suggested for adsorption including chelation, electrostatic interactions, π-π electron donor-acceptor interaction and hydrogen bonding. SA/TA showed a slight loss in adsorption capacity toward CQ and sustained physicochemical structural stability, even after six adsorption-desorption cycles. In addition to CQ, SA/TA could be efficiently used for adsorption of two other antivirus drugs, namely, hydroxychloroquine sulfate and oseltamivir phosphate. This work provides an effective strategy for the design and fabrication of novel adsorbents that can effectively adsorb antiviral drugs over a wide pH range.


Assuntos
Cloroquina/análogos & derivados , Hidrogéis , Polifenóis , Poluentes Químicos da Água , Hidrogéis/química , Adsorção , Alginatos/química , Água , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
4.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959954

RESUMO

A novel adsorbent-contaminant system was investigated for its ability to remove a contaminant of emerging concern, diclofenac potassium, from contaminated water. Bio-based crosslinked chitosan beads functionalized with poly(itaconic acid) side chains were examined for their potential to remove the emerging contaminant. To evaluate the impact of the polymeric microstructure on its adsorptive capacity, several adsorbent samples were prepared using different combinations of initiator and monomeric concentrations. Fourier Transform Infrared (FTIR) analysis confirmed the crosslinking of the chitosan chains and the incorporation of the carboxylic groups on the surface of the final chitosan beads. After the grafting copolymerization process, an additional peak at 1726 cm-1 corresponding to the carboxylic C=O groups of the grafted chains appeared, indicating the successful preparation of poly(IA)-g-chitosan. Thermal stability studies showed that the grafting copolymerization improved the thermal stability of the beads. X-ray and Scanning Electron Microscopy confirmed the successful grafting of the itaconic acid on the surface of the beads. The study revealed that the higher the initiator concentration, the greater the number of side chains, whereas the higher the monomeric concentration, the longer the length of these side chains. The adsorption mechanism involved hydrogen bonding to the carboxylic groups of the grafted chains along with n-π* stacking interaction between the amino group of the chitosan and the aromatic rings of diclofenac potassium. The adsorption efficiencies of diclofenac potassium onto the grafted beads were significantly improved compared to the unfunctionalized chitosan beads, reaching values above 90%. The removal efficiency of grafted chitosan increased with an increase in the concentration in the range of 10-30 ppm and then flattened out in the range of 30-50 ppm. The removal efficiencies of 1-50 ppm of DCF ranged between about 75% and 92% for the grafted chitosan and 30-45% for the crosslinked chitosan. Rapid adsorption occurred within 20 min for all grafted sample combinations, and the adsorption kinetics followed a pseudo-second-order model with qe values ranging from 28 to 44.25 g/mg and R2 values greater than 0.9915. The results highlight the potential of grafted chitosan beads in removing emerging contaminants from contaminated water without harming the environment.

5.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688189

RESUMO

The emerging pharmaceutical contaminants diclofenac (DCF) and salicylic acid (SA) pose potential hazards to humans and living organisms due to their persistence in water environments. In this work, the conductive polymers polypyrrole (PPY) and polyaniline (PANI) were successfully coated on cotton fabrics, as confirmed by FTIR and SEM measurements. The coated fabrics efficiently removed DCF at pH 5.3 and SA at pH 4, with removal efficiencies that exceeded 90% and 70%, respectively. Adsorption was rapid for most of the tested contaminant-fabric systems and reached equilibrium within 20-30 min. The best adsorption performance for both contaminants was shown on the PPY-coated fabrics, which yielded adsorption capacities of about 65 and 21 mg/g for DCF and SA, respectively. This could be explained by molecular modeling simulations, which mostly estimated higher total cohesive energy densities for adsorption on the PPY-coated fabrics than on the PANI-coated ones. The adsorption mechanism involved both coulombic electrostatic attractions and non-coulombic van der Waals and π-π stacking. The fabrics could be reused for three adsorption-desorption cycles. Immobilization of the conductive polymers on cotton fabrics provides a facile method for their handling and collection during adsorption and regeneration cycles while maintaining their multi-functionality in adsorbing different contaminants.

6.
RSC Adv ; 13(29): 19757-19769, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404314

RESUMO

Expired chemicals pose a potential environmental threat to humans and living organisms. Herein, we proposed a green approach whereby expired cellulose biopolymers were converted to hydrochar adsorbents and tested for removing the emerging pharmaceutical contaminants of fluoxetine hydrochloride and methylene blue from water. A thermally stable hydrochar was produced with an average particle size of 8.1 ± 1.94 nm and a mesoporous structure that exhibited a larger surface area than the expired cellulose by 6.1 times. The hydrochar was efficient in removing the two contaminants with efficiencies that reached above 90% under almost neutral pH conditions. Adsorption exhibited fast kinetics and regeneration of the adsorbent was successful. The adsorption mechanism was hypothesized in view of the Fourier Transform Infra-Red (FTIR) spectroscopy and pH effect measurements to be mainly electrostatic. A hydrochar/magnetite nanocomposite was also synthesized, and its adsorption behavior for both contaminants was tested and it revealed an enhanced percent removal relative to the bare hydrochar by 27.2% and 13.1% for FLX and MB, respectively. This work supports the strategies for zero waste management and the circular economy.

7.
ACS Omega ; 8(23): 20697-20707, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332775

RESUMO

There is an increasing need to find cost-effective and sustainable solutions for treating wastewater from contaminants of emerging concern (CECs). In this regard, cape gooseberry husk-typically an agri-food waste-is investigated for the first time as a potential biosorbent for the removal of model pharmaceutical contaminants of caffeine (CA) and salicylic acid (SA) from water. Three different preparations of husks were investigated and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis, zeta potential, and point of zero charge measurements. The activation of the husk led to an increase in the surface area, pore volume, average pore size, and adsorption favorability. The single-component adsorption of SA and CA onto the three husks was investigated at different initial concentrations and pH values to determine the optimal operating conditions. The maximal removal efficiencies of SA and CA reached up to 85 and 63%, respectively, for the optimal husk which also offers a less energy-intensive option in its activation. This husk also exhibited high rates of adsorption that exceeded other husk preparations by up to four times. It was proposed that CA interacts electrostatically with the husk, while SA binds through weak physical interactions (e.g., van der Waals and H-bonding). In binary systems, CA adsorption was highly favored over SA adsorption, owing to its electrostatic interactions. The selectivity coefficients αSACA varied with initial concentration and ranged between 61 and 627. The regeneration of husk was also successful resulting in its re-use for up to four full consecutive cycles, further demonstrating the efficiency of cape gooseberry husk use in wastewater treatment.

8.
Pharmaceutics ; 14(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214150

RESUMO

Marine algae are a rich source of biologically active compounds that can be utilized in various food and pharmaceutical applications. In this study, ultrasound-assisted extraction (UAE) was optimized to maximize yield and total carbohydrate content extracted from the red algae, Pterocladia capillacea. The extract was shown to possess potent antioxidant activity of up to ~70%, and was successfully used as a reducing and capping agent in the green synthesis of copper nanoparticles, which were characterized by UV-spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Primarily, CuO nanoparticles with an average size of 62 nm were produced. FTIR spectra for the extract and algal-mediated CuO nanoparticles showed characteristic polysaccharide peaks. The synthesized CuO nanoparticles were subsequently loaded with nedaplatin where UV data suggested a complex formation. Nedaplatin release profiles showed a sustained release that reached a maximum at 120 h. The formulation was shown to have greater cytotoxicity relative to nedaplatin on hepatocellular carcinoma, breast cancer and ovarian cancer cell lines with IC50 values of 0.40 ± 0.08, 1.50 ± 0.12, and 0.70 ± 0.09 µg/mL, respectively. Loading nedaplatin onto CuO nanoparticles synthesized using red algae extract, greatly enhances its anticancer effect.

9.
J Hazard Mater ; 426: 127796, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34802821

RESUMO

In this study, two environmentally-friendly macroscopically formal (PVF) composited sponges (PL and PLS) functionalized with lignin and lignosulfonate, respectively, were fabricated by a one-step mechanical foaming method. PLS, obtained with the fed mass ratio of 0.3:1 lignosulfonate to PVF in the preparation process, possessed a large specific surface area of approximately 22.396 m2/g, a three-dimensional skeleton structure with a skeletal density of 3.236 g/cm3, and 0.338 mmol/g of acidic oxygen-containing groups. Thus, it showed a high adsorption capacity of 0.16-0.24 mmol/g in removing seven antibiotics, of the popular fluoroquinolones (FQs) family from water. The contributions of hydrogen bonding, electrostatic attraction (EA) and π-π electron donor-acceptor interaction to the adsorption of FQs onto the PL and PLS sponges were analyzed systematically by investigating the pH dependence of the adsorption capacity, and the changes in adsorption of two sub structural analogs of FQs as molecular probes, and by performing theoretical calculations. The EA between the acidic oxygen-containing groups on the sponges and the amino groups of FQs played a dominant role in adsorption in near neutral conditions, leading to a superior adsorption performance for PLS. Overall, the composited sponges have the advantages of simple production, environmental-friendliness, convenient recycle, and low cost, which renders them potentially viable in treating real wastewater containing FQs.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Antibacterianos , Fluoroquinolonas , Poluentes Químicos da Água/análise
10.
Int J Biol Macromol ; 182: 1582-1589, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019926

RESUMO

Nano-fiber composites have shown promising potential in biomedical and biotechnological applications. Herein, novel nano-fiber composites constituting a blend of polyvinyl alcohol (PVA) and chitosan (CS) along with different weight ratios of nano-bioactive glass (BG) were prepared by electrospinning. Nano-fibers incorporating 10% (by wt.) of BG were uniform, dense and defect-free with a diameter of 20-125 nm. The model osteoporotic drug (Risedronate sodium) was blended with the electrospinning forming solution and the in-vitro drug release was further studied. About 30% of the drug was released after only 30 min and the release pattern was sustained over 96 h. Drug release took place through a two-stage intra-particle diffusion mechanism. BG-incorporated nano-fibers markedly retarded the drug release profile relative to their BG-free counterparts. They also enhanced the drug release efficiency by releasing 93 ± 4% of the drug. The developed nano-fiber composites can be potentially used as drug-delivery vehicles due to their efficiency and sustained drug release capacity.


Assuntos
Quitosana/química , Nanocompostos/química , Álcool de Polivinil/química , Preparações de Ação Retardada/química , Vidro/química
11.
PLoS One ; 16(4): e0249764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857218

RESUMO

Biogenic copper nanoparticles (Cu NPs) were synthesized using the aqueous crude extract of mangrove leaves, Avicennia marina (CE). GC-MS metabolite profiling of CE showed that their carbohydrates are mainly composed of D-mannose (29.21%), D-fructose, (18.51%), L-sorbose (12.91%), D-galactose (5.47%) and D-Talose (5.21%). Ultra-fine nanoparticles of 11.60 ±4.65 nm comprising Cu2O and Cu(OH)2 species were obtained with a carbohydrate and phenolic content of 35.6±3.2% and 3.13±0.05 mgGA/g, respectively. The impact of the biogenic Cu NPs on wheat seedling growth was dose-dependent. Upon treatment with 0.06 mg/mL of Cu NPs, the growth was promoted by 172.78 ± 23.11 and 215.94 ± 37.76% for wheat root and shoot, respectively. However, the lowest relative growth % of 81.94 ± 11.70 and 72.46 ± 18.78% were recorded for wheat root and shoot, respectively when applying 0.43 mg/mL of Cu NPs. At this concentration, peroxidase activity (POX) of the germinated wheat seeds also decreased, while ascorbic acid oxidase (AAO) and polyphenol oxidase (PPO) activities increased. Higher uptake of copper was observed in the root relative to the shoot implying the accumulation of the nanoparticles in the former. The uptake was also higher than that of the commercial Cu NPs, which showed an insignificant effect on the seedling growth. By treating the wheat leaves in foliar application with 0.06 mg/mL of Cu NPs, their contents of Chlorophyll a, Chlorophyll b, and total chlorophyll were enhanced after 21 days of application. Meanwhile, the high concentration (0.43 mg/mL) of Cu NPs was the most effective in reducing the leaf content of chlorophyll (a, b, and total) after the same time of application. The findings of this study manifest the potential of utilizing controlled doses of the prepared biogenic Cu NPs for inhibition or stimulation of seedling growth.


Assuntos
Avicennia/química , Clorofila/metabolismo , Cobre/administração & dosagem , Nanopartículas/administração & dosagem , Plântula/metabolismo , Triticum/metabolismo , Cobre/química , Germinação , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
12.
RSC Adv ; 11(41): 25628-25638, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478889

RESUMO

This work investigates the bioactivity of novel silver-doped (BG-Ag) and gold-doped (BG-Au) quaternary 46S6 bioactive glasses synthesized via a semi-solid-state technique. A pseudo-second-order kinetic model successfully predicted the in vitro uptake kinetic profiles of the initial ion-exchange release of Ca in simulated body fluid, the subsequent Si release, and finally, the adsorption of Ca and P onto the bioactive glasses. Doping with silver nanoparticles enhanced the rate of P uptake by up to approximately 90%; whereas doping with gold nanoparticles improved Ca and P uptake rates by up to about 7 and 2 times, respectively; as well as Ca uptake capacity by up to about 19%. The results revealed that the combined effect of Ca and Si release, and possibly the release of silver and gold ions into solution, influenced apatite formation due to their effect on Ca and P uptake rate and capacity. In general, gold-doped bioactive glasses are favoured for enhancing Ca and P uptake rates in addition to Ca uptake capacity. However, silver-doped bioactive glasses being less expensive can be utilized for applications targeting rapid healing. In vitro studies showed that BG, BG-Ag and BG-Au had no cytotoxic effects on osteosarcoma MG-63 cells, while they exhibited a remarkable cell proliferation even at low concentration. The prepared bioactive glass doped with noble metal nanoparticles could be potentially used in bone regeneration applications.

13.
Sci Rep ; 10(1): 7824, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385345

RESUMO

Fava bean peels, Vicia faba (FBP) are investigated as biosorbents for the removal of Methylene Blue (MB) dye from aqueous solutions through a novel and efficient sorption process utilizing ultrasonic-assisted (US) shaking. Ultrasonication remarkably enhanced sorption rate relative to conventional (CV) shaking, while maintaining the same sorption capacity. Ultrasonic sorption rate amounted to four times higher than its conventional counterpart at 3.6 mg/L initial dye concentration, 5 g/L adsorbent dose, and pH 5.8. Under the same adsorbent dose and pH conditions, percent removal ranged between 70-80% at the low dye concentration range (3.6-25 mg/L) and reached about 90% at 50 mg/L of the initial dye concentration. According to the Langmuir model, maximum sorption capacity was estimated to be 140 mg/g. A multiple linear regression statistical model revealed that adsorption was significantly affected by initial concentration, adsorbent dose and time. FBP could be successfully utilized as a low-cost biosorbent for the removal of MB from wastewater via US biosorption as an alternative to CV sorption. US biosorption yields the same sorption capacities as CV biosorption, but with significant reduction in operational times.

14.
Molecules ; 24(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195764

RESUMO

This paper describes a novel combined post-extraction process for obtaining bioactive compounds from the aqueous high molecular weight sulfated polysaccharides (SPs) extracts of the green algae, Ulva lactuca. After extracting the SPs, they were enzymatically hydrolyzed then the hydrolysate (V45) was fractionated into eight different molecular weight fractions (F1-F8) using ion exchange chromatography. Crude SPs together with V45 and (F1-F8) were examined for their carbohydrate, protein, and sulfate contents. In addition, their degree of polymerization (DP) was estimated and they were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Fractions S1, F4, F5, and F8 showed promising antioxidant and antitumor activities in vitro. In particular, the remarkable antitumor activity of F5 on three types of cancer cell lines could be attributed to its comparable contents of protein, carbohydrate, and sulfate, in addition to its comparable contents of rhamnose and glucuronic acid, and the same for glucose and arabinose. F5 also possessed the highest Hill coefficient among the four promising fractions indicating a higher degree of cooperativity in ligand binding. Other influencing factors including DP, composition, and type of characteristic functional groups were also discussed. The implications of this work could potentially benefit the industries of food supplements and pharmaceuticals.


Assuntos
Cromatografia por Troca Iônica/métodos , Enzimas/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Sulfatos/farmacologia , Ulva/química , Antineoplásicos/farmacologia , Antioxidantes/análise , Linhagem Celular Tumoral , Fracionamento Químico , Humanos , Hidrólise , Polimerização , Proteínas/análise , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Pharmaceutics ; 11(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226856

RESUMO

Chemotherapeutic agents are considered one of the strategies in treating cancer. However, their use is faced by many challenges, such as poor water solubility leading to poor bioavailability and non-selective targeting of cancerous cells leading to diminished therapeutic actions and systemic adverse effects. Many approaches were adopted to overcome these drawbacks and to achieve the targeted delivery of the chemotherapeutic agents to the cancerous cells while minimizing adverse effects. Recently, supramolecular systems such as macrocycles have gained attention in the field of cancer therapy for being able to encapsulate different anticancer drugs via either host-guest complexation or self-assembly leading to a myriad of advantages. This review highlights the most recent studies concerned with the design of such novel systems for cancer therapy.

16.
Biomed Res Int ; 2019: 4983291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834268

RESUMO

The use of nanomaterials in bioseparations has been recently introduced to overcome the drawbacks of the conventional methods. Different forms of nanomaterials, particularly magnetic nanoparticles (MNPs), carbon nanotubes (CNTs), casted nanoporous membranes, and electrospun nanofiber membranes were utilized in biological separation for the aim of production of different biomolecules such as proteins, amino acids, nucleic acids, and enzymes. This paper critically reviews the state-of-the-art efforts undertaken in this regard, with emphasis on the synthesis and performance evaluation of each nanoform. Challenges and future prospects in developing nanoenabled bioseparations are also discussed, for the purpose of highlighting potential advances in the synthesis and fabrication of novel nanomaterials as well as in the design of efficient nanoenabled processes for separating a wide spectrum of biomolecules.


Assuntos
Nanopartículas de Magnetita/química , Membranas Artificiais , Nanofibras , Nanotubos de Carbono/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Enzimas/química , Enzimas/isolamento & purificação , Nanofibras/química , Ácidos Nucleicos/química , Ácidos Nucleicos/isolamento & purificação , Proteínas/química , Proteínas/isolamento & purificação
17.
Biomed Mater ; 12(1): 015029, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233761

RESUMO

This work investigates and compares the influence of the synthesis process on the in vitro bioactivity of two quaternary bioactive glasses prepared via melting and sol-gel (SG) techniques. The two glasses are named MG and SG, respectively. Powder samples were soaked in simulated body fluid for different time intervals to study the kinetics of Ca and P uptake onto their surface as well as Si release. The uptake kinetics followed the pseudo-second order model, and the kinetic parameters in addition to the initial rates were estimated. MG manifested higher Ca uptake capacity than SG which could be attributed to the presence of a residual organic layer capping the surface of SG, as was confirmed by Fourier transform infrared and nuclear magnetic resonance analyses. However, higher rate of Ca uptake was exhibited by SG probably due to its higher reactivity that resulted from its smaller nano-size and higher negative charge as was evident from transmission electron microscopy and dynamic light scattering measurements, respectively. Furthermore, MG showed slightly higher P uptake capacity and lower amount of Si release. Initial rates of Ca and P uptakes onto SG as well as Si release from SG exceeded those of MG. Human bone osteosarcoma cells (Saos-2) were co-cultured with both MG and SG glasses and the latter showed higher alkaline phosphatase activity and higher cell growth induction. The results showed the promising potential of using both bioactive glasses in bone regeneration. However, the choice of the appropriate bioactive glass depends on the targeted applications.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Vidro/química , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/isolamento & purificação , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Géis , Humanos , Técnicas In Vitro , Cinética , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
18.
AAPS PharmSciTech ; 18(4): 1056-1069, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27520562

RESUMO

Local delivery of antibiotic into injured bone is a demand. In this work, different scaffolds of chitosan (C) with or without bioactive glass (G) were prepared using the freeze-drying technique in 2:1, 1:1, and 1:2 weight ratios. Chitosan scaffolds and selected formulas of chitosan to bioglass were loaded with ciprofloxacin in 5%, 10%, and 20% w/w. Scaffold morphology showed an interconnected porous structure, where the glass particles were homogeneously dispersed in the chitosan matrix. The kinetic study confirmed that the scaffold containing 1:2 weight ratio of chitosan to glass (CG12) showed optimal bioactivity with good compromise between Ca and P uptake capacities and Si release rate. Chitosan/bioactive glass scaffolds showed larger t 50 values indicating less burst drug release followed by a sustained drug release profile compared to that of chitosan scaffolds. The cell growth, migration, adhesion, and invasion were enhanced onto CG12 scaffold surfaces. Samples of CG12 scaffolds with or without 5% drug induced vascular endothelial growth factor (VEGF), while those containing 10% drug diminished VEGF level. Only CG12 induced the cell differentiation (alkaline phosphatase activity). In conclusion, CG12 containing 5% drug can be considered a biocompatible carrier which would help in the localized osteomyelitis treatment.


Assuntos
Ciprofloxacina , Osteomielite/terapia , Alicerces Teciduais/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cerâmica/química , Cerâmica/farmacologia , Quitosana/química , Quitosana/farmacologia , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Porosidade , Engenharia Tecidual/métodos
20.
Int J Biol Macromol ; 86: 282-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812111

RESUMO

The glucose-galactose binding protein (GGBP) is used as an optical biosensor in medical and bioprocess applications. This paper investigates the effect of pH on the behavior of GGBP-L255C labeled with Acrylodan for the purpose of finding the optimum conditions for sensing purposes as well as for protein preparation, purification and storage. The Acrylodan-GGBP fluorescence response in absence and presence of glucose was measured under varying buffer and pH conditions. Dissociation constants (Kd) and Gibbs free energies (ΔG) for the protein-glucose binding were calculated. Binding was found to be energetically favored at slightly acidic to neutral conditions, specifically close to the pI of GBP (∼ 5.0). Minimal fluorescence response to glucose was exhibited at pH 3.0 accompanied by a blue shift in the steady state fluorescence spectrum. In contrast, an almost 45% response to glucose was shown at pH 4.5-9.0 with a 13-nm red shift. Frequency domain lifetime measurements and quenching with KI suggest that at highly acidic conditions both the glucose-free and the glucose-bound protein are in a conformation distinct from those observed at higher pH values.


Assuntos
2-Naftilamina/análogos & derivados , Técnicas Biossensoriais/métodos , Proteínas de Ligação ao Cálcio/química , Glucose/química , Proteínas de Transporte de Monossacarídeos/química , Proteínas Periplásmicas de Ligação/química , 2-Naftilamina/química , Proteínas de Ligação ao Cálcio/metabolismo , Glucose/análise , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA