Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Plant Genome ; 17(1): e20372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37518859

RESUMO

Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: "avoidance" by efficient sodium and chloride exclusion at the roots, and "acclimation" by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance.


Assuntos
Phoeniceae , Phoeniceae/genética , Plantas Tolerantes a Sal/genética , Multiômica , Proteômica , Água do Mar
2.
J Clin Med ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892820

RESUMO

BACKGROUND: Glioblastoma (GBM) harbors significant genetic heterogeneity, high infiltrative capacity, and patterns of relapse following many therapies. The expression of nuclear factor kappa-B (NF-κB p65 (RelA)) and signaling pathways is constitutively activated in GBM through inflammatory stimulation such as tumor necrosis factor-alpha (TNFα), cell invasion, motility, abnormal physiological stimuli, and inducible chemoresistance. However, the underlying anti-tumor and anti-proliferative mechanisms of NF-κB p65 (RelA) and TNFα are still poorly defined. This study aimed to investigate the expression profiling of NF-κB p65 (RelA) and TNFα as well as the effectiveness of celecoxib along with temozolomide (TMZ) in reducing the growth of the human GBM cell line SF-767. METHODS: genome-wide expression profiling, enrichment analysis, immune infiltration, quantitative expression, and the Microculture Tetrazolium Test (MTT) proliferation assay were performed to appraise the effects of celecoxib and TMZ. RESULTS: demonstrated the upregulation of NF-κB p65 (RelA) and TNFα and celecoxib reduced the viability of the human glioblastoma cell line SF-767, cell proliferation, and NF-κB p65 (RelA) and TNFα expression in a dose-dependent manner. Overall, these findings demonstrate for the first time how celecoxib therapy could mitigate the invasive characteristics of the human GBM cell line SF-767 by inhibiting the NF-κB mediated stimulation of the inflammatory cascade. CONCLUSION: based on current findings, we propose that celecoxib as a drug candidate in combination with temozolomide might dampen the transcriptional and enzymatic activities associated with the aggressiveness of GBM and reduce the expression of GBM-associated NF-κB p65 (RelA) and TNFα inflammatory genes expression.

3.
Heliyon ; 9(6): e17260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484282

RESUMO

Apple cultivation is one of the most significant means of subsistence in the Kashmir region of the northwestern Himalayas. It is considered as the backbone of the region's economy. Apple cultivation in the region is dominated by a late maturing cultivar "Red Delicious" which usually on maturity causes glut in the market. In order to bring new cultivars in the cultivation, and to expand the maturity season, it is necessary to evaluate the new cultivars on fruit physico-chemical attributes which ultimately decide the market rates before recommending to farmers for cultivars adoption. Therefore, the current study was carried out to evaluate thirteen apple cultivars on physico-chemical attributes over two years, 2017 and 2018 under agro-climatic conditions of Kashmir region The results revealed that cultivars differed significantly in terms of physico-chemical properties. Cultivars with the highest and lowest values for initial fruit set, fruit drop, final fruit retention, and fruit firmness in 2017 did not follow the same trend in 2018. During 2017 and 2018, cultivar Mollie's Delicious possessed the highest fruit length (72.39 mm and 81.45 mm), fruit diameter (81.18 mm and 84.14 mm), and fruit weight (205.85 g and 247.16 g), whereas cultivar Baleman's Cider had the lowest values (50.76 mm and 52.83 mm, 60.10 mm and 62.08 mm, and 71.46 g and 86.94 g), respectively. The harvesting dates were quite spread out during both years of study. Cultivar Mollie's Delicious was harvested the earliest in both years, on August 5th, 2017 and August 8th, 2018. Cultivar Fuji Zehn Aztec was the last cultivar harvested in 2017 on October 2 and in 2018 on October 5. The maximum number of seeds per fruit was noticed in the cultivar Mollie's Delicious (8.34 and 8.71) during both 2017 and 2018, respectively. Cultivar Starkrimson had the fewest seeds per fruit in 2017 (7.11) and 2018 (7.42). Cultivar Baleman's Cider had the highest acidity in 2017 (0.63%) and 2018 (0.52%). In both 2017 (0.25%) and 2018 (0.23%), the Adam's Pearmain cultivar was the least acidic. Cultivar Allington Pippin (16.13 °Brix) and Red Gold (16.73 °Brix) had the highest TSS in 2017 and 2018, respectively, whereas Vance Delicious (12.30 °Brix) and Top Red (10.78 °Brix) had the lowest TSS in 2017 and 2018, respectively. The cultivars Mollie's Delicious and Red Gold had the highest total sugars (11.33 and 11.40%) in 2017 and 2018, respectively. Cultivar Baleman's Cider had the lowest total sugars (9.82%) in 2017 while Top Red (9.78%) in 2018. The cultivar Vance Delicious had the highest ratio of leaves to fruits in 2017 (55.44) and for Shalimar Apple-2 in 2018 (49.65). In 2017, cultivars Fuji Zehn Aztec (29.26) and Silver Spur (24.51), had the fewest leaves per fruit. The highest leaf chlorophyll content was recorded in cultivar Shireen (3.50 and 3.57 mg g-1 fresh weight) during the years 2017 and 2018, respectively. Cultivar Baleman's Cider had the lowest leaf chlorophyll content (2.15 mg g-1 fresh weight) during 2017, while cultivar Allington Pippin (2.09 mg g-1 fresh weight) had the lowest leaf chlorophyll content in 2018. The cultivars Fuji Zehn Aztec, with a yield efficiency of 0.78 kg/cm2 and Silver Spur with a yield efficiency of 1.14 kg/cm2 were the most yield efficient during the years 2017 and 2018, respectively. Cultivar Shalimar Apple-2 was least performing with yield efficiencies of 0.05 and 0.07 kg/cm2 during 2017 and 2018, respectively.The findings suggest that cultivar Mollie's Delicious commercially matures first and has the highest fruit length, diameter, and weight; hence, it can be a good option for cultivation so as to fetch the maximum price in the market when other cultivars are still maturing. Shalimar Apple-2 is precluded for cultivation due to least yield efficiency, whereas cultivars Fuji Zehn Aztec and Silver Spur are recommended to farmers for their higher yield efficiency.

4.
Diagnostics (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370986

RESUMO

It has been validated beyond doubt that High-Resolution Computed Tomography (HRCT) chest and to some extent chest radiographs have a role in corona virus disease-19 (COVID-19). Much less is known about the role of lung ultrasonography (LUS) in COVID-19. In this paper, our main purpose was to gauge the relationship between LUS and chest HRCT in reverse transcriptase polymerase chain reaction (RT-PCR) documented cases of COVID-19, as well as in those with high suspicion of COVID-19 with negative RT-PCR. It was a prospective study carried out at our tertiary care hospital, namely, SKIMS Soura. The total number of patients in this study were 152 (200 patients were selected out of which only 152 had undergone both LUS and chest HRCT). The patients were subjected to both LUS and chest HRCT. The radiologist who performed LUS was blinded to clinical findings and HRCT was evaluated by a radiologist with about a decade of experience. The LUS findings compatible with the disease were subpleural consolidations, B-lines and irregular pleural lines. Findings that were compatible with COVID-19 on chest HRCT were bibasilar, subpleural predominant ground glass opacities, crazy paving and consolidations. COVID-19-positive patients were taken up for chest HRCT for disease severity stratification and were also subjected to LUS. On HRCT chest, the imaging abnormalities compatible with COVID-19 were evident in 110 individuals (72.37%), and on Lung Ultrasound they were observed in 120 individuals (78.95%). Imaging of COVID-19 patients assessed by both LUS and HRCT chest,, showed a positive correlation (p < 0.0001). The study revealed a sensitivity of 88%, a specificity of 76.62%, a positive predictive value of 78.57% and a negative predictive value of 86.76%. None of the individuals with a diagnosis of COVID-19 on HRCT were missed on LUS. An excellent correlation was derived between the LUS score and CT total severity score (p < 0.0001 with a kappa of 0.431). Similar precision compared with chest HRCT in the detection of chest flaws in COVID-19 patients was obtained on LUS.

5.
Molecules ; 28(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175270

RESUMO

The low water solubility of an active pharmaceutical ingredient (aripiprazole) is one of the most critical challenges in pharmaceutical research and development. This antipsychotic drug has an inadequate therapeutic impact because of its minimal and idiosyncratic oral bioavailability to treat schizophrenia. The main objective of this study was to improve the solubility and stability of the antipsychotic drug aripiprazole (ARP) via forming binary as well as ternary inclusion complexes with hydroxypropyl-ß-cyclodextrin (HPßCD) and L-Arginine (LA) as solubility enhancers. Physical mixing and lyophilization were used in different molar ratios. The developed formulations were analyzed by saturation solubility analysis, and dissolution studies were performed using the pedal method. The formulations were characterized by FTIR, XRD, DSC, SEM, and TGA. The results showcased that the addition of HPßCD and LA inclusion complexes enhanced the stability, in contrast to the binary formulations and ternary formulations prepared by physical mixing and solvent evaporation. Ternary formulation HLY47 improved dissolution rates by six times in simulated gastric fluid (SGF). However, the effect of LA on the solubility enhancement was concentration-dependent and showed optimal enhancement at the ratio of 1:1:0.27. FTIR spectra showed the bond shifting, which confirmed the formation of new complexes. The surface morphology of complexes in SEM studies showed the rough surface of lyophilization and solvent evaporation products, while physical mixing revealed a comparatively crystalline surface. The exothermic peaks in DSC diffractograms showed diminished peaks previously observed in the diffractogram of pure drug and LA. Lyophilized ternary complexes displayed significantly enhanced thermal stability, as observed from the thermograms of TGA. In conclusion, it was observed that the preparation method and a specific drug-to-polymer and amino acid ratio are critical for achieving high drug solubility and stability. These complexes seem to be promising candidates for novel drug delivery systems development.


Assuntos
Antipsicóticos , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Solubilidade , Aripiprazol , beta-Ciclodextrinas/química , Solventes , Arginina/química , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Medicina (Kaunas) ; 59(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984473

RESUMO

Background and Objectives: In December 2019, a flu-like illness began in the Chinese city of Wuhan. This sickness mainly affected the lungs, ranging from a minor respiratory tract infection to a severe lung involvement that mimicked the symptoms of Severe Acute Respiratory Syndrome (SARS). The World Health Organization (WHO) labelled this sickness as a pandemic in March 2020, after it quickly spread throughout the world population. It became clear, as the illness progressed, that people with concomitant illnesses, particularly diabetes mellitus (DM) and other immunocompromised states, were outmatched by this illness. This study was aimed to evaluate the correlation between Computed Tomographic Severity Score (CTSS) and underlying diabetes mellitus in coronavirus disease (COVID)-19 patients. Materials and Methods: This was a hospital-based prospective study in which a total of 152 patients with reverse transcriptase polymerase chain reaction (RT-PCR) positive COVID status who underwent high-resolution computed tomography (HRCT) of the chest were evaluated and categorized into mild, moderate and severe cases based on the extent of lung parenchymal involvement. A total score from 0-25 was given, based on the magnitude of lung involvement. Statistical analysis was used to derive a correlation between DM and CTSS, if any. Results: From our study, it was proven that patients with underlying diabetic status had more severe involvement of the lung as compared to non-diabetics, and it was found to be statistically significant (p = 0.024). Conclusions: On analysis of what we found based on the study, it can be concluded that patients with underlying diabetic status had a more prolonged and severe illness in comparison to non-diabetics, with higher CTSS in diabetics than in non-diabetics.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/complicações , Estudos Prospectivos , SARS-CoV-2 , Pulmão , Diabetes Mellitus/epidemiologia
7.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992503

RESUMO

Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.


Assuntos
Ilarvirus , Malus , Vírus do Mosaico , Vírus de Plantas , Doenças das Plantas , Plantas
8.
J King Saud Univ Sci ; 35(4): 102603, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36844755

RESUMO

The 21st century will be indelible in the world as ruin of the outbreak of COVID-19 was arose in Wuhan, China has now spread all over the world, up to August 2020. This study was based on the factors affecting the epidemiology of this virus in human societies of global concern. We studied the articles published in journals on various aspects of nCoVID19. The Wikipedia and WHO situation reports have also been searched out for related information. Outcomes were followed up until 2020. The COVID-19 is a virus with pandemic potential which may continue to cause regular infection in human. The pandemic outbreak of COVID-19 threatened public health across the globe in form of system as reflected in the shape of emergency. Approximately 21 million humans are infected and 759,400 have lost their lives till 2020 in all over the world. We have described epidemiological features, reservoirs, transmission, incubation period, rate of fatality, management including recent clinical chemotherapeutic approach and preventive measurements and masses which are at risk of COVID19. This virus causes viral pneumonia when it attacks on respiratory system and multiple failure which can leads to life threatening complications. It is believed to be zoonotic importance although it is not clear from which animal and how it is transmitted. Zoonotic transmission of COVID-19 has not yet known by science. The current study will help to establish a baseline for early effective control of this rapidly spreading severe viral illness. The available data on COVID-19 indicates that older males with comorbidities would have been more infected, which can result in severe respiratory complications. Implementation of preventive measurements, investigation of proper chemotherapeutics and detection of cross species transmission agents must be ensured.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36767482

RESUMO

Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02-4.5, 0.02-2.3, and 5.8-6.0 mg/L for CR, 0.4-3.8, 0.05-3.6, and 3.2-5.8 mg/L for Ni, and 0.05-0.8, 0.05-0.8, and 0.6-1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH-, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow's pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4-3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais Pesados/análise , Qualidade da Água , Água Subterrânea/química , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise
10.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677716

RESUMO

Elaeagnus angustifolia (EA) mediated green chemistry route was used for the biofabrication of NiONPs without the provision of additional surfactants and capping agents. The formation of NiONPs was confirmed using advanced different characterization techniques such as Scanning electron microscopy, UV, Fourier transmission-infrared, RAMAN, and energy dispersal spectroscopic and dynamic light scattering techniques. Further, different biological activities of EA-NiONPs were studied. Antibacterial activities were performed using five different bacterial strains using disc-diffusion assays and have shown significant results as compared to standard Oxytetracycline discs. Further, NiONPs exhibited excellent antifungal performance against different pathogenic fungal strains. The biocompatibility test was performed using human RBCs, which further confirmed that NiONPs are more biocompatible at the concentration of 7.51-31.25 µg/mL. The antioxidant activities of NiONPs were investigated using DPPH free radical scavenging assay. The NiONPs were demonstrated to have much better antioxidant potentials in terms of % DPPH scavenging (93.5%) and total antioxidant capacity (81%). Anticancer activity was also performed using HUH7 and HEP-G2 cancer cell lines and has shown significant potential with IC50 values of 18.45 µg/mL and 14.84 µg/mL, respectively. Further, the NiONPs were evaluated against Lesihmania tropica parasites and have shown strong antileishmanial potentials. The EA-NiONPs also showed excellent enzyme inhibition activities; protein kinase (19.4 mm) and alpha-amylase (51%). In conclusion, NiONPs have shown significant results against different biological assays. In the future, we suggest various in vivo activities for EA-NiONPs using different animal models to further unveil the biological and biomedical potentials.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Ecol Evol ; 13(1): e9756, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699577

RESUMO

The movement of organisms is a central process in ecology and evolution, and understanding the selective forces shaping the spatial structure of populations is essential to conservation. Known as a trans-Saharan migrant capable of long-distance flights, the Glossy Ibis Plegadis falcinellus' dispersal remains poorly known. We started a ringing scheme in 2008, the first of its kind in North Africa, and ringed 1121 fledglings over 10 years, of which 265 (23.6%) were resighted. Circular statistics and finite mixture models of natal dispersal indicated: (1) a strong West/Northwest-East/Southeast flight orientation; (2) Glossy Ibis colonies from North Africa and Southern Europe (particularly on the Iberian Peninsula) are closely linked through partial exchanges of juvenile and immature birds; (3) unlike birds from Eastern Europe, North African Glossy Ibis disperse to but do not seem to undergo regular round-trip migration to the Sahel; (4) young adults (>2-years-old) have a higher probability of dispersing further than individuals in their first calendar year (<1-year-old); and (5) dispersal distance is not influenced by sex or morphometric traits. Together, these results enhance our knowledge of the dispersal and metapopulation dynamics of Glossy Ibis, revealing large-scale connectivity between the Iberian Peninsula and Algeria, likely driven by the spatial heterogeneity of the landscape in these two regions and the prevailing winds in the Western Mediterranean.

12.
Funct Plant Biol ; 50(2): 136-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35144727

RESUMO

Plant leaves provide a unique insight into the changes that occur in organs, tissues and cells as they approach senescence. As part of the parental outlay, plants instigate leaf senescence to reallocate resources from older tissues to new organs towards the termination of the growing season. The aim of crop breeding initiatives is to optimize senescence for specific species. Considering hormonal regulation and their crosstalk during leaf senescence through integration of developmental signals, this work examines the efficacy of polyamines (PAs) in modulating several biochemical and physiological aspects with an ultimate aim to delay leaf senescence in leaf discs of Berginia ciliata (Haw.) sternb. Leaf discs were treated with putrescine (Put), spermidine (Spd) and spermine (Spm) at 20µM, 20µM and 15µM concentration, respectively. A set of leaf discs kept in distilled water served as the control. Leaf discs treated with PAs were green and fresh by about 4 days compared to the control, thus exhibited delayed senescence. This delayed leaf senescence corroborated with the maintenance of high activity of reactive oxygen species (ROS) scavenging antioxidant enzymes viz , superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and higher content of chlorophylls. A marked increase was also observed in membrane stability and soluble proteins in leaf discs treated with PAs. Exogenous PAs reduced oxidative stress in the leaf discs, as revealed by lower malondialdehyde (MDA) level, which is manifested as reduced lipid peroxidation (LPO). Improved membrane stability was proportional to lower LPO, as measured by the membrane stability index (MSI).


Assuntos
Melhoramento Vegetal , Poliaminas , Poliaminas/metabolismo , Poliaminas/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologia , Folhas de Planta
13.
IUBMB Life ; 75(2): 161-180, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565478

RESUMO

This study was designed to screen novel thiourea derivatives against different enzymes, such as α-amylase, α-glucosidase, protein tyrosine phosphatase 1 B, and advanced glycated end product (AGEs). A cytotoxicity analysis was performed using rat L6 myotubes and molecular docking analysis was performed to map the binding interactions between the active compounds and α-amylase and α-glucosidase. The data revealed the potency of five compounds, including E (1-(2,4-difluorophenyl)-3-(3,4-dimethyl phenyl) thiourea), AG (1-(2-methoxy-5-(trifluoromethyl) phenyl)-3-(3-methoxy phenyl) thiourea), AF (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), AD (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), and AH (1-(2,4-difluorophenyl)-3-(2-iodophenyl) thiourea), showed activity against α-amylase. The corresponding percentage inhibitions were found to be 85 ± 1.9, 82 ± 0.7, 75 ± 1.2, 72 ± 0.4, and 65 ± 1.1%, respectively. These compounds were then screened using in vitro assays. Among them, AH showed the highest activity against α-glucosidase, AGEs, and PTP1B, with percentage inhibitions of 86 ± 0.4% (IC50  = 47.9 µM), 85 ± 0.7% (IC50  = 49.51 µM), and 85 ± 0.5% (IC50  = 79.74 µM), respectively. Compound AH showed an increased glucose uptake at a concentration of 100 µM. Finally, an in vivo study was conducted using a streptozotocin-induced diabetic mouse model and PTP1B expression was assessed using real-time PCR. Additionally, we examined the hypoglycemic effect of compound AH in diabetic rats compared to the standard drug glibenclamide.


Assuntos
Diabetes Mellitus Experimental , alfa-Glucosidases , Camundongos , Ratos , Animais , alfa-Glucosidases/genética , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Simulação de Acoplamento Molecular , Reação de Maillard , Hipoglicemiantes/farmacologia , Produtos Finais de Glicação Avançada/genética , alfa-Amilases , Tioureia/farmacologia
14.
Front Pharmacol ; 13: 996285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324674

RESUMO

Human phospholipase A2 group IIa (sPLA2IIa) is an inflammatory enzyme that plays a significant role in tumorigenesis. Inhibiting the sPLA2IIa enzyme with an effective molecule can reduce the inflammatory response and halt cancer progression. The present study evaluates quercitrin, a biflavonoid, for sPLA2IIa inhibition and anticancer activity. Quercitrin inhibited sPLA2IIa activity to a greater extent-at 86.24% ± 1.41 with an IC50 value of 8.77 µM ± 0.9. The nature of sPLA2IIa inhibition was evaluated by increasing calcium concentration from 2.5 to 15 µM and substrate from 20 to 120 nM, which did not alter the level of inhibition. Intrinsic fluorescence and far UV-CD studies confirmed the direct interaction of quercitrin with the sPLA2IIa enzyme. This significantly reduced the sPLA2IIa-induced hemolytic activity and mouse paw edema from 97.32% ± 1.23-16.91% ± 2.03 and 172.87% ± 1.9-118.41% ± 2.53, respectively. As an anticancer activity, quercitrin reduced PC-3 cell viability from 98.66% ± 2.51-18.3% ± 1.52 and significantly decreased the IL-6 level in a dose-dependent manner from 98.35% ± 2.2-37.12% ± 2.4. It increased the mean survival time (MST) of EAC-bearing Swiss albino mice from 30 to 35 days. It obeyed Lipinski's rule of five, suggesting a druggable property. Thus, all the above experimental results were promising and encouraged further investigation into developing quercitrin as a therapeutic drug for both inflammatory diseases and cancers.

15.
Life (Basel) ; 12(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362905

RESUMO

BACKGROUND: Ultrasonography (USG) is a perfect device for analyzing more than one joint in rather brief intervals of time and is well accepted by children with no harmful ionizing radiation, usually does not require sedation, and can be carried out without difficulty in an outpatient setting. PURPOSE: To demonstrate the ability of ultrasonography (USG) in detecting clinical and subclinical synovitis in children with juvenile idiopathic arthritis (JIA) and compare the USG findings with clinical findings. METHODS: 20 patients with JIA diagnosed according to the ILAR criteria were include. A total of 208 joints were examined both clinically and ultrasonographically for detection of synovitis. The presence of subclinical synovitis detected by USG was sought and its effect on the classification of JIA was assessed. USG assessment was done using the High-Resolution Linear probe including both grey scale and Power Doppler assessment. RESULTS: The mean age of patients was 10.2 years with average disease duration of 5.9 months. A total of 49 joints (23.5%) had clinical synovitis and 59 joints (28.4%) had USG synovitis out of a total of 208 joints. A total of 14 joints had subclinical synovitis (8.8% out of the 159 clinically normal joints) upon USG. USG additionally brought about classifying three patients as having poly articular disorder who had been considered as oligo articular upon clinical examination. CONCLUSION: USG assessment of subclinical synovitis in JIA patients is an essential component of classifying the disease and detects more joints with synovitis than clinical examination; however, both are complimentary and should be used in combination in all patients with JIA.

16.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234899

RESUMO

The remediation in plant enzymatic activities in Cd-contaminated soil was monitored through tea waste. Tea is an extensively used beverage worldwide with the release of a high quantity of tea waste utilized in the growing condition of Helianthus annuus on Cd metal contaminated soil. The study was a plan for the natural environmental condition in the greenhouse. For this purpose, four sets of plants were cultivated in triplicate and marked as (i) control, (ii) Cd stress plants, (iii) dry tea waste and Cd stress, and (iv) fresh tea waste and Cd stress. The improved efficiency of biochemical reactions in plants under Cd stress with tea waste treatment was the consequence of blocking Cd movement in the soil through adsorption on tea waste, showing that the tea waste effectively controls the mobility of Cd from the soil to the roots of the plants. Scan electron microscopy (SEM) validates the recovery of the leaves of the plants. The remediation of plant growth and enzyme activities such as amylase, peroxidase, nitrate reductase (NR), and nitrite reductase (NiR) under Cd metal-contaminated soil through tea waste was investigated. The source of tea waste in contaminated soil resulted in the recovery of the photosynthetic process and an improvement in amylase, NR, NiR, and peroxidase activities, thereby resulting in the recovery of pigments coupled with an increase in the biomass of the plants. It was suggested that tea waste acts as a good biosorbent of Cd and energy provider to the plants for normal enzyme activity under Cd stress and may be used by farmers in the future for safe and healthy crops as a cost-effective technology.


Assuntos
Helianthus , Poluentes do Solo , Amilases , Biodegradação Ambiental , Cádmio/análise , Produtos Agrícolas , Nitrito Redutases , Peroxidases , Solo , Poluentes do Solo/análise , Chá
17.
Environ Res ; 215(Pt 3): 114317, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174758

RESUMO

In the current research work, the activated carbon synthesized from the plant species Delonix regia is doped with iron oxide nanoparticles and enforced as a nanosorbent for the effective extermination of Tartrazine (TAR) and Methylene blue (MB) dyes. This nanosorbent is prepared from the bark powder of the Delonix regia and subjected to chemical activation; Furthermore, the synthesized biosorbent were characterized using FTIR, SEM, TGA, and XRD to understand their functional properties and structural morphology. The optimum effectiveness adsorption of Tartrazine and Methylene blue has been investigated by using different key parameters. The conclusions have shown the highest removal percentage at a pH of 3 and 6 for Tartrazine and Methylene blue, respectively. For the various initial concentrations, the adsorption percentage reached equilibrium after 60 min and 90 min for TAR and MB. The adsorption equilibrium values were applied to various isotherms models. The adsorbent showed a higher removal capacity of 357.142 mg g-1 and 147.058 mg g-1 and for MB and TAR respectively. The kinetic data were best fits to pseudo second order model. The thermodynamic parameters indicated that this adsorption process was found to be spontaneous, exothermic and feasible at different temperatures. These results have shown that the prepared adsorbent is an environmentally friendly and suitable material for the elimination of TAR and MB from water systems.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Corantes/química , Concentração de Íons de Hidrogênio , Ferro , Cinética , Azul de Metileno/química , Pós , Tartrazina , Termodinâmica , Água , Poluentes Químicos da Água/análise
18.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139876

RESUMO

The current article reported the investigation of metal toxicity on the oxygen-evolving complex (OEC) in Spinacia oleracea related to depletion in chloride ion concentration, an essential part of the photosystem (II). The greenhouse experiment was conducted where S. oleracea was cultivated in three replicates with control plants (plants "a") treated with tap water. Moreover, 30 ppm of Cu2+ ion solution and Pb2+ ion solution was used to irrigate the rest of the plants, labeled as plants "b" and "c", respectively, on alternative days. Advanced technologies such as Atomic Absorption Spectrophotometry (AAS), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and UV-visible Spectrophotometry were used to monitor the essential nutrients in leaves to validate the function of the photosystem (I and II). Reduced Cl- ions contents showed that both metals (Cu2+ and Pb2+) altered the essential elements of the oxygen-evolving complex (OEC) of photosystem (II), required to maintain the coordination structure of the Mn4CaO5 cluster. SEM analysis revealed the modified leaf structure of the S. oleracea under Cu2+ and Pb2+ accumulation due to which distorted cellular structure, reduced surface area, and the (shattered) stomatal opening compared to the plants "a" were observed. The EDS analysis of plants "b" and "c" showed high oxygen contents followed by reduced chloride contents over plants "a", reflecting the infirmity of OEC to push out oxygen, which leads to generating oxidative stress. The lower pigment concentration in leaves of metal-contaminated plants "b" and "c" impacts carbon assimilation, which is linked to the reduced stomatal opening and influences the gaseous exchange rates. Additionally, increased contents of K+ and Ca2+ may be due to self-defense mechanisms under low chloride contents to speed up oxygen evolution to protect plants against oxidative stress. It was concluded that Cu2+ and Pb2+ metal toxicity influences essential Cl- and K+ contents, which modify the photosystem II system; subsequently, a reduced growth rate was observed.

19.
Sci Rep ; 12(1): 13205, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915126

RESUMO

In the era of anthropocene, global warming tends to alter the distribution range of the plant species. Highly fragile to such changes are the species that are endemic, inhabit higher elevations and show narrow distribution ranges. Predicting and plotting the appropriate suitable habitats and keeping knowledge of how climate change will affect future distribution become imperative for designing effective conservation strategies. In the current study we have used BIOMOD ensemble forecasting to study the current and predict the future potential distribution of Dactylorhiza hatagirea and Rheum webbianum and describe their niche dynamics in Himalayan biodiversity hotspots under climate change scenarios using ecospat R package. Results reveal sufficient internal evaluation metrics with area under curve (AUC) and true skill statistic (TSS) values greater than 0.8 i.e. 0.93 and 0.98 and 0.82 and 0.90 for D. hatageria and R. webbianum respectively, which signifies robustness of the model. Among different bioclimatic variables, bio_1, bio_3, bio_8, bio_14 and bio_15 were the most influential, showing greater impact on the potential distribution of these plant species. Range change analysis showed that both the studied species will show significant contraction of their suitable habitats under future climatic scenarios. Representative Concentration Pathway (RCP) 8.5 for the year 2070, indicate that the suitable habitats could be reduced by about 51.41% and 70.57% for D. hatagirea and R. webbianum respectively. The results of the niche comparisons between the current and future climatic scenarios showed moderate level of niche overlap for all the pairs with D. hatageria showing 61% overlap for current vs. RCP4.5 2050 and R. webbianum reflects 68% overlap for current vs. RCP4.5 2050. Furthermore, the PCA analysis revealed that climatic conditions for both the species vary significantly between current and future scenarios. The similarity and equivalence test showed that the niche between present and future climate change scenarios is comparable but not identical. From the current study we concluded that the influence of climate change on the habitat distribution of these plant species in the Himalayan biodiversity hotspots can be considered very severe. Drastic reduction in overall habitat suitability poses a high risk of species extinction and thereby threatens to alter the functions and services of these fragile ecosystems. Present results can be used by conservationists for mitigating the biodiversity decline and exploring undocumented populations on one hand and by policymakers in implementing the policy of conservation of species by launching species recovery programmes in future on the other. The outcomes of this study can contribute substantially to understand the consequences of climate change in the Himalayan biodiversity hotspots.


Assuntos
Mudança Climática , Ecossistema , Orchidaceae , Rheum , Biodiversidade , Extinção Biológica , Plantas
20.
Ecol Evol ; 12(7): e9065, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813916

RESUMO

How environmental changes are affecting bird population dynamics is one of the most challenging conservation issues. Dietary studies of top avian predators could offer scope to monitor anthropogenic drivers of ecosystem changes. We investigated the diet of breeding Eleonora's falcon in an area of Northeastern Algeria in the years 2010-2012. Feathers and insect remains originating from prey plucking behavior were analyzed, providing insights into the seasonally changing diet of this raptor, as well as the trans-Mediterranean avian migration. A total of 77 species of birds (16 Sylviidae, 11 Turdidae, and 4 Emberizidae), 3 species of insects, and 1 lizard were identified among prey remains, reflecting a diverse diet. Diet composition and prey abundance varied seasonally, faithfully correlating with the passage of migrant birds as recorded from bird ring recoveries. Our findings suggest that dietary studies of predators might be deployed to investigate changes in bird migration. We discuss our results in the context of trans-Mediterranean migration, with early-season prey mainly comprising trans-Saharan migrants (Apus apus and Merops apiaster) and late-season prey being dominated by Mediterranean winter migrants (Erithacus rubecula, Turdus philomelos, Sylvia atricapilla, and Sturnus vulgaris). Notably, we observed a significant reduction in species richness of passerine remains in 2012, potentially highlighting a decline in the diversity of avian migrants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA