Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 730, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085769

RESUMO

Despite the considerable efforts reported so far to enhance seed priming, novel ideas are still needed to be suggested to this sustainable sector of agri-seed industry. This could be the first study addressing the effect of nitric oxide (NO) under open field conditions. The impacts of seed redox-priming using sodium nitroprusside (SNP) and osmo-priming with calcium chloride (CaCl2), both applied individually or successively, were investigated under salinity stress conditions on wheat plants (Triticum aestivum L.). Various parameters, including water relations, growth, yield, photosynthetic pigments, and antioxidant activities (enzymatic and non-enzymatic), were recorded to assess the outcomes of these priming agents on mitigating the negative impacts of salinity stress on wheat plants. Water consumptive use (ETa) and irrigation water applied (IWA) decreased with seeds priming. Successive priming with SNP + CaCl2 induced the greatest values of crop water productivity (CWP), irrigation water productivity (IWP), seed index, grain yield and grain nitrogen content.Under salinity stress, the dry weight of plants was decreased. However, hydro-priming and successive chemical priming agents using combinations of calcium chloride and sodium nitroprusside (CaCl2 + SNP & SNP + CaCl2) preserved growth under salinity stress.Individual priming with sodium nitroprusside (SNP) and calcium chloride (CaCl2) resulted in the lowest recorded content of sodium in the shoot, with a value of 2 ppm. On the other hand, successive priming using CaCl2 + SNP or SNP + CaCl2 induced the contents of potassium in the shoot, with values of 40 ppm and 39 ppm, respectively. Malondialdehyde decreased in shoot significantly withapplicationof priming agents. Successive priming with CaCl2 + SNP induced the highest proline contents in shoot (6 µg/ g FW). The highest value of phenolics and total antioxidants contents in shoot were recorded under successive priming using CaCl2 + SNP and SNP + CaCl2.Priming agents improved the activities of ascorbate peroxidase and catalase enzymes. The successive priming improved water relations (ETa, IWA, CWP and IWP) and wheat growth and productivity under salinity stress more than individual priming treatments.


Assuntos
Antioxidantes , Cloreto de Cálcio , Óxido Nítrico , Nitroprussiato , Espécies Reativas de Oxigênio , Tolerância ao Sal , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cálcio/farmacologia , Nitroprussiato/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/metabolismo , Cálcio/metabolismo
2.
Plants (Basel) ; 11(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235465

RESUMO

Nano-fertilizers are a new tool that can be used to address plant production challenges, and it addresses such nutrient deficiencies through smart agriculture approaches. Iron (Fe) is a vital element for several metabolic and physiological processes; however, Fe deficiency is common in poorly fertile soils (sand soil) and in arid areas. Therefore, additional research is required to select the most efficient form of iron absorbance. This research was implemented on broad bean plants (Vicia faba L. var. major Harz) to examine the impact of three iron sources: nano-iron (FeNPs, T1), iron sulfate (T2), and chelated iron (T3) as a foliar spray on the morphological properties, physiological attributes, and nutritional status of these plants compared to the untreated plants (control). The obtained results showed that foliar spraying with FeNPs, chelated iron and sulphate iron fertilizers increased plant height by 35.01%, 26.2, and 20.4%; leaf area by 38.8%, 18.3%, and 8.1%; the fresh weight of the plant by 47%, 32.8%, and 7.3%; the dry weight of the plant by 52.9%, 37.3%, and 11.2%; and the number of branches by 47%, 31.3%, and 25.6 %, respectively, compared to the control treatment (CT). Furthermore, the application of FeNPs, chelated iron, and sulphate iron fertilizers improved the number of pods by 47.9%, 24.8%, and 6.1%; the number of seeds by 32.8%, 7.9%, and 2.8%; and seed weight by 20.8%, 9.1%, and 5.4%, compared to control treatment (CT). Additionally, foliar application of FeNPs showed the highest values of photosynthesis rate (Pn), water-use efficiency (WUE), total chlorophyll, and phytohormones (IAA, GA3) compared to all the other treatments. The anatomical structure revealed an enhancement of leaf size and thickness (epidermis cells and mesophyll tissue) affected by FeNPs treatment compared to other treatments. Foliar application of FeNPs also improved the total content of carbohydrates, crude protein, element content (N, P, K, Ca, Na, Fe, Zn, Mn, and Cu), and some amino acids such as lysine, arginine, phenylalanine, isoleucine, and tyrosine in the seeds of broad beans. Based on the above results, the maximum values of all tested measurements were observed when FeNPs were used as the foliar spraying followed by chelated and sulphate iron fertilizers. Therefore, these findings suggest that using FeNPs, as a foliar treatment, could be a promising strategy for reducing the Fe deficiency in sandy soil and enhancing plant growth, pod yield, and pod quality of broad bean plants in addition to being environmentally favored in arid areas.

3.
J Plant Res ; 131(6): 1015-1028, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29357048

RESUMO

Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil-1). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.


Assuntos
Boro/toxicidade , Brassica napus/efeitos dos fármacos , Cálcio/uso terapêutico , Ácido Salicílico/uso terapêutico , Silício/uso terapêutico , Estresse Fisiológico/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Glutationa/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA