Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(10): 5028-5047, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36286057

RESUMO

(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than -9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of -49.02, -48.07, and -67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA