RESUMO
We report the first measurement of the parity-violating elastic electron scattering asymmetry on ^{27}Al. The ^{27}Al elastic asymmetry is A_{PV}=2.16±0.11(stat)±0.16(syst) ppm, and was measured at ⟨Q^{2}⟩=0.02357±0.00010 GeV^{2}, ⟨θ_{lab}⟩=7.61°±0.02°, and ⟨E_{lab}⟩=1.157 GeV with the Q_{weak} apparatus at Jefferson Lab. Predictions using a simple Born approximation as well as more sophisticated distorted-wave calculations are in good agreement with this result. From this asymmetry the ^{27}Al neutron radius R_{n}=2.89±0.12 fm was determined using a many-models correlation technique. The corresponding neutron skin thickness R_{n}-R_{p}=-0.04±0.12 fm is small, as expected for a light nucleus with a neutron excess of only 1. This result thus serves as a successful benchmark for electroweak determinations of neutron radii on heavier nuclei. A tree-level approach was used to extract the ^{27}Al weak radius R_{w}=3.00±0.15 fm, and the weak skin thickness R_{wk}-R_{ch}=-0.04±0.15 fm. The weak form factor at this Q^{2} is F_{wk}=0.39±0.04.
RESUMO
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θ_{lab}=7.9° and a mean energy of 1.149 GeV. The asymmetry result is B_{n}=-5.194±0.067(stat)±0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θ_{lab}â0) where they should be most reliable.
RESUMO
The Q(weak) experiment has measured the parity-violating asymmetry in ep elastic scattering at Q(2)=0.025(GeV/c)(2), employing 145 µA of 89% longitudinally polarized electrons on a 34.4 cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run, constituting approximately 4% of the data collected in the experiment, are reported here. From these initial results, the measured asymmetry is A(ep)=-279±35 (stat) ± 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in ep scattering. The small Q(2) of this experiment has made possible the first determination of the weak charge of the proton Q(W)(p) by incorporating earlier parity-violating electron scattering (PVES) data at higher Q(2) to constrain hadronic corrections. The value of Q(W)(p) obtained in this way is Q(W)(p)(PVES)=0.064±0.012, which is in good agreement with the standard model prediction of Q(W)(p)(SM)=0.0710±0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutron's weak charge to be Q(W)(n)(PVES+APV)=-0.975±0.010.
RESUMO
An experiment with a newly developed high-resolution kaon spectrometer and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab. The ground state of a neutron-rich hypernucleus, (Λ)(7)He, was observed for the first time with the (e, e'K+) reaction with an energy resolution of ~0.6 MeV. This resolution is the best reported to date for hypernuclear reaction spectroscopy. The (Λ)(7)He binding energy supplies the last missing information of the A = 7, T = 1 hypernuclear isotriplet, providing a new input for the charge symmetry breaking effect of the ΛN potential.
RESUMO
We have extracted QCD matrix elements from our data on doubly polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element dË2, which arises strictly from quark-gluon interactions, to be unambiguously nonzero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham sum rule is valid. The fundamental Bjorken sum rule obtained from the a0 matrix element is satisfied at our low momentum transfer.
RESUMO
We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV
RESUMO
The electric form factor of the neutron was determined from measurements of the d-->(e-->,e'n)p reaction for quasielastic kinematics. Polarized electrons were scattered off a polarized deuterated ammonia (15ND3) target in which the deuteron polarization was perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle detector. We find G(n)(E)=0.0526+/-0.0033(stat)+/-0.0026(sys) and 0.0454+/-0.0054+/-0.0037 at Q(2)=0.5 and 1.0 (GeV/c)(2), respectively.
RESUMO
The (3,4)(Lambda)H and (4)(Lambda)H hypernuclear bound states have been observed for the first time in kaon electroproduction on (3,4)He targets. The production cross sections have been determined at Q(2)=0.35 GeV2 and W=1.91 GeV. For either hypernucleus the nuclear form factor is determined by comparing the angular distribution of the (3,4)He(e,e(')K+)(3,4)(Lambda)H processes to the elementary cross section 1H(e,e K+)Lambda on the free proton, measured during the same experiment.
RESUMO
We report new measurements of the ratio of the electric form factor to the magnetic form factor of the neutron, G(n)(E)/G(n)(M), obtained via recoil polarimetry from the quasielastic 2H(e-->,e(')n-->)1H reaction at Q2 values of 0.45, 1.13, and 1.45 (GeV/c)(2) with relative statistical uncertainties of 7.6% and 8.4% at the two higher Q2 points, which points have never been achieved in polarization measurements.
RESUMO
High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the (e,e'K+) reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be approximately 900 keV for the (12)(Lambda)B spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.
RESUMO
Neutron fluences were measured from 435 MeV/nucleon Nb ions stopping in a Nb target and 272 MeV/nucleon Nb ions stopping in targets of Nb and Al for neutrons above 20 MeV and at laboratory angles between 3 degrees and 80 degrees. The resultant spectra were integrated over angles to produce neutron energy distributions and over energy to produce neutron angular distributions. The total neutron yields for each system were obtained by integrating over the angular distributions. The angular distributions from all three systems are peaked forward, and the energy distributions from all three systems show an appreciable yield of neutrons with velocities greater than the beam velocity. Comparison of the total neutron yields from the two Nb + Nb systems suggests that the average neutron multiplicity decreases with decreasing projectile energy. Comparison of the total yields from the two 272 MeV/nucleon systems suggests that the total yields show the same dependence on projectile and target mass number as do total inclusive neutron cross sections. The data are compared with Boltzmann-Uehling-Uhlenbeck model calculations.
Assuntos
Alumínio , Radiação Cósmica , Modelos Teóricos , Nêutrons , Nióbio , Interações de Partículas Elementares , Partículas Elementares , Transferência de Energia , Proteção Radiológica , Análise EspectralRESUMO
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.